1,957 research outputs found
Relative multiplexing for minimizing switching in linear-optical quantum computing
Many existing schemes for linear-optical quantum computing (LOQC) depend on
multiplexing (MUX), which uses dynamic routing to enable near-deterministic
gates and sources to be constructed using heralded, probabilistic primitives.
MUXing accounts for the overwhelming majority of active switching demands in
current LOQC architectures. In this manuscript, we introduce relative
multiplexing (RMUX), a general-purpose optimization which can dramatically
reduce the active switching requirements for MUX in LOQC, and thereby reduce
hardware complexity and energy consumption, as well as relaxing demands on
performance for various photonic components. We discuss the application of RMUX
to the generation of entangled states from probabilistic single-photon sources,
and argue that an order of magnitude improvement in the rate of generation of
Bell states can be achieved. In addition, we apply RMUX to the proposal for
percolation of a 3D cluster state in [PRL 115, 020502 (2015)], and we find that
RMUX allows a 2.4x increase in loss tolerance for this architecture.Comment: Published version, New Journal of Physics, Volume 19, June 201
Concept definition study for recovery of tumbling satellites. Volume 1: Executive summary, study results
The first assessment is made of the design requirements and conceptual definition of a front end kit to be transported on the currently defined Orbital Maneuvering Vehicle (OMV) and the Space Transportation System Shuttle Orbiter, to conduct remote, teleoperated recovery of disabled and noncontrollable, tumbling satellites. Previous studies did not quantify the dynamic characteristics of a tumbling satellite, nor did they appear to address the full spectrum of Tumbling Satellite Recovery systems requirements. Both of these aspects are investigated with useful results
Quantum correlations in a few-atom spin-1 Bose-Hubbard model
We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement
Skin microvascular reactivity in children and adolescents with type 1 diabetes in relation to levels of physical activity and aerobic fitness
No studies to date have evaluated the relationship between exercise and microvascular function in youth with type 1 diabetes mellitus (T1DM). Twenty-nine complication free children and adolescents with T1DM were assessed for skin microvascular reactivity, aerobic fitness (VO2peak) and physical activity. VO2peak but not physical activity was significantly and independently associated with maximal hyperemia of the skin microcirculation (p < .01). No significant associations were found between venoarteriolar reflex (VAR) vasoconstriction and VO2peak or physical activity. Aerobic fitness may be an important indicator or mediator of effective microvascular endothelial function in youth with T1DM
Parental views of children's physical activity: a qualitative study with parents from multi-ethnic backgrounds living in England
Background: Guidelines recommend children and young people participate in at least 60 min of physical activity (PA) every day, however, findings from UK studies show PA levels of children vary across ethnic groups. Since parents play an instrumental role in determining children’s PA levels, this article aims to explore parental views of children’s PA in a multi-ethnic sample living in a large city in the North-West of England.
Methods: Six single-ethnic focus groups were conducted with 36 parents of school-aged children (4 to 16 years) with a predominantly low socio-economic status (SES). Parents self-identified their ethnic background as Asian Bangladeshi (n = 5), Black African (n = 4), Black Somali (n = 7), Chinese (n = 6), White British (n = 8) and Yemeni (n = 6). Focus group topics included understanding of PA, awareness of PA guidelines, knowledge of benefits associated with PA and perceived influences on PA in childhood. Data were analysed thematically using QSR NVivo 9.0.
Results: Parents from all ethnic groups valued PA and were aware of its benefits, however they lacked awareness of PA recommendations, perceived school to be the main provider for children’s PA, and reported challenges in motivating children to be active. At the environmental level, barriers to PA included safety concerns, adverse weather, lack of resources and lack of access. Additional barriers were noted for ethnic groups from cultures that prioritised educational attainment over PA (Asian Bangladeshi, Chinese, Yemeni) and with a Muslim faith (Asian Bangladeshi, Black Somali, Yemeni), who reported a lack of culturally appropriate PA opportunities for girls.
Conclusion: Parents from multi-ethnic groups lacked awareness of children’s PA recommendations and faced barriers to promoting children’s PA out of school, with certain ethnic groups facing additional barriers due to cultural and religious factors. It is recommended children’s PA interventions address influences at all socio-ecological levels, and account for differences between ethnic groups
Quantum States of Light Produced by a High-Gain Optical Parametric Amplifier for Use in Quantum Lithography
We present a theoretical analysis of the properties of an unseeded optical parametic amplifier (OPA) used as the source of entangled photons for applications in quantum lithography. We first study the dependence of the excitation rate of a two-photon absorber on the intensity of the light leaving the OPA. We find that the rate depends linearly on intensity only for output beams so weak that they contain fewer than one photon per mode. We also study the use of an N-photon absorber for arbitrary N as the recording medium to be used with such a light source. We find that the contrast of the interference pattern and the sharpness of the fringe maxima tend to increase with increasing values of N, but that the density of fringes and thus the limiting resolution does not increase with N. We conclude that the output of an unseeded OPA exciting an N-photon absorber provides an attractive system in which to perform quantum lithography
The beta-decay of 22Al
In an experiment performed at the LISE3 facility of GANIL, we studied the
decay of 22Al produced by the fragmentation of a 36Ar primary beam. A
beta-decay half-life of 91.1 +- 0.5 ms was measured. The beta-delayed one- and
two-proton emission as well as beta-alpha and beta-delayed gamma decays were
measured and allowed us to establish a partial decay scheme for this nucleus.
New levels were determined in the daughter nucleus 22Mg. The comparison with
model calculations strongly favours a spin-parity of 4+ for the ground state of
22Al
Invariant quantum discord in qubit-qutrit systems under local dephasing
We investigate the dynamics of quantum discord and entanglement for a
class of mixed qubit-qutrit states assuming that only the qutrit is under the action of a dephasing channel. We demonstrate that even though the entanglement in the qubit-qutrit state disappears in a finite time interval, partial coherence left in the system enables quantum discord to remain invariant throughout the whole time evolution
The Energy of a Plasma in the Classical Limit
When \lambda_{T} << d_{T}, where \lambda_{T} is the de Broglie wavelength and
d_{T}, the distance of closest approach of thermal electrons, a classical
analysis of the energy of a plasma can be made. In all the classical analysis
made until now, it was assumed that the frequency of the fluctuations \omega <<
T (k_{B}=\hbar=1). Using the fluctuation-dissipation theorem, we evaluate the
energy of a plasma, allowing the frequency of the fluctuations to be arbitrary.
We find that the energy density is appreciably larger than previously thought
for many interesting plasmas, such as the plasma of the Universe before the
recombination era.Comment: 10 pages, 2 figures, accepted for publication in Phys.Rev.Let
Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report
A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites
- …
