Many existing schemes for linear-optical quantum computing (LOQC) depend on
multiplexing (MUX), which uses dynamic routing to enable near-deterministic
gates and sources to be constructed using heralded, probabilistic primitives.
MUXing accounts for the overwhelming majority of active switching demands in
current LOQC architectures. In this manuscript, we introduce relative
multiplexing (RMUX), a general-purpose optimization which can dramatically
reduce the active switching requirements for MUX in LOQC, and thereby reduce
hardware complexity and energy consumption, as well as relaxing demands on
performance for various photonic components. We discuss the application of RMUX
to the generation of entangled states from probabilistic single-photon sources,
and argue that an order of magnitude improvement in the rate of generation of
Bell states can be achieved. In addition, we apply RMUX to the proposal for
percolation of a 3D cluster state in [PRL 115, 020502 (2015)], and we find that
RMUX allows a 2.4x increase in loss tolerance for this architecture.Comment: Published version, New Journal of Physics, Volume 19, June 201