751 research outputs found

    The Origin of Structures in Generalized Gravity

    Get PDF
    In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur

    Intrinsic Geometry of a Null Hypersurface

    Get PDF
    We apply Cartan's method of equivalence to construct invariants of a given null hypersurface in a Lorentzian space-time. This enables us to fully classify the internal geometry of such surfaces and hence solve the local equivalence problem for null hypersurface structures in 4-dimensional Lorentzian space-times

    Black holes in the Brans-Dicke-Maxwell theory

    Get PDF
    The black hole solutions in the higher dimensional Brans-Dicke-Maxwell theory are investigated. We find that the presence of the nontrivial scalar field depends on the spacetime dimensions (D). When D=4, the solution corresponds to the Reissner-Nordstr\"{o}m black hole with a constant scalar field. In higher dimensions (D>4), one finds the charged black hole solutions with the nontrivial scalar field. The thermal properties of the charged black holes are discussed and the reason why the nontrivial scalar field exists are explained. Also the solutions for higher dimensional Brans-Dicke theory are given for comparison.Comment: Revtex, 5 pages, no figures, contents were rewritten and new references were adde

    Dark Energy, Induced Gravity and Broken Scale Invariance

    Get PDF
    We study the cosmological evolution of an induced gravity model with a self-interacting scalar field σ\sigma and in the presence of matter and radiation. Such model leads to Einstein Gravity plus a cosmological constant as a stable attractor among homogeneous cosmologies and is therefore a viable dark-energy (DE) model for a wide range of scalar field initial conditions and values for its positive γ\gamma coupling to the Ricci curvature γσ2R\gamma \sigma^{2}R.Comment: 6 pages, 5 figures, 1 table: final version accepted for publication in PL

    Kinetic Inflation in Stringy and Other Cosmologies

    Get PDF
    An inflationary epoch driven by the kinetic energy density in a dynamical Planck mass is studied. In the conformally related Einstein frame it is easiest to see the demands of successful inflation cannot be satisfied by kinetic inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle is manifest as a kind of graceful exit problem and/or a kind of flatness problem. These arguments indicate the weakness of only the simplest formulation. {}From them can be gleaned directions toward successful kinetic inflation.Comment: 26 pages, LaTeX, CITA-94-2

    Inflation and Reheating in Induced Gravity

    Get PDF
    Inflation is studied in the context of induced gravity (IG) γσ2R\gamma \sigma^2 R, where RR is the Ricci scalar, σ\sigma a scalar field and γ\gamma a dimensionless constant. We study in detail cosmological perturbations in IG and examine both a Landau-Ginzburg (LG) and a Coleman-Weinberg (CW) potential toy models for small field and large field (chaotic) inflation and find that small field inflationary models in IG are constrained to γ3×103\gamma \lesssim 3 \times 10^{-3} by WMAP 5 yrs data. Finally we describe the regime of coherent oscillations in induced gravity by an analytic approximation, showing how the homogeneous inflaton can decay in its short-scale fluctuations when it oscillates around a non-zero value σ0\sigma_0.Comment: 5 pages, 2 figure

    Dilaton Black Holes with Electric Charge

    Get PDF
    Static spherically symmetric solutions of the Einstein-Maxwell gravity with the dilaton field are described. The solutions correspond to black holes and are generalizations of the previously known dilaton black hole solution. In addition to mass and electric charge these solutions are labeled by a new parameter, the dilaton charge of the black hole. Different effects of the dilaton charge on the geometry of space-time of such black holes are studied. It is shown that in most cases the scalar curvature is divergent at the horizons. Another feature of the dilaton black hole is that there is a finite interval of values of electric charge for which no black hole can exist.Comment: 20 pages, LaTeX file + 1 figure, CALT-68-1885. (the postscript file is improved

    The dynamical equivalence of modified gravity revisited

    Full text link
    We revisit the dynamical equivalence between different representations of vacuum modified gravity models in view of Legendre transformations. The equivalence is discussed for both bulk and boundary space, by including in our analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre transformed action coincides with the usual Einstein frame one. We then re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second order theory with a new set of field variables, four tensor fields and one scalar and study its dynamics. For completeness, we also calculate the conformal transformation of the full Jordan frame R+f(G) action. All the appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5. New results added in Section 6. Version to appear in Class. Quantum Gravit
    corecore