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Inflation is studied in the context of induced gravity (IG) γ σ 2 R , where R is the Ricci scalar, σ a scalar
field and γ a dimensionless constant. We study in detail cosmological perturbations in IG and examine
both a Landau–Ginzburg (LG) and a Coleman–Weinberg (CW) potential toy models for small field and
large field (chaotic) inflation and find that small field inflationary models in IG are constrained to
γ � 3 × 10−3 by WMAP 5-yrs data. Finally we describe the regime of coherent oscillations in induced
gravity by an analytic approximation, showing how the homogeneous inflaton can decay in its short-scale
fluctuations when it oscillates around a non-zero value σ0.

© 2009 Elsevier B.V. Open access under CC BY license. 
Beginning with the association of the gravitational coupling
with a scalar field [1] many attempts have been made to relate
the gravitational constant to dynamics. Indeed starting from an
attempt to relate it to one loop effects in some fundamental inter-
action [2] induced gravity (IG) theories γ σ 2 R have been developed
[3–5]. In such theories σ acquires a non-zero vacuum expectation
value through the spontaneous breaking of scale invariance arising
through the presence of a condensate [3] or quantum effects (ra-
diative corrections) [6]. Further such theories can be generalized
[7] leading to a viable dark energy model [8].

In IG one may also use σ to achieve inflation. “Old inflation” in
such a context is not satisfactory [9] and small field and large field
(chaotic) inflation appear more promising. In particular for the last
case with γ � 1 the constraints on σ are such that it may even
be compatible with spontaneous symmetry breaking in the usual
particle physics context [10–13].

In this Letter we analyze the slow-roll predictions for single-
field inflation in IG and compare them with the recent WMAP
5-yrs data [14]. We also give an analytic approximate solution for
the coherent oscillation regime during which reheating in IG takes
place.

Let us start by considering the IG action

S =
∫

d4x
√−g

[
γ

2
σ 2 R − gμν

2
∂μσ∂νσ − V (σ )

]
(1)
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where γ is a dimensionless and positive definite parameter and
we assume a spatially flat Robertson–Walker background gμν =
diag(−1,a2(t),a2(t),a2(t)). The variation of the above action leads
to the following set of independent equations

H2 = 1

3γ σ 2

[
σ̇ 2

2
+ V (σ )

]
− 2H

σ̇

σ
, (2)

σ̈ + 3Hσ̇ + σ̇ 2

σ
= − V eff,σ

1 + 6γ
(3)

where H = ȧ/a, V eff,σ = dV /dσ − 4V /σ and the dot is the deriva-
tive with respect to cosmic time.

Inflation generically occurs during the slow-rolling of σ , for
which Eqs. (2), (3) reduce to:

H2 � V

3γ σ 2
, 3Hσ̇ � − V eff,σ

1 + 6γ
. (4)

The ratio −Ḣ/H2 obtains contributions not only from the square
of the velocity of the scalar field as in Einstein Gravity (EG) but
also from other terms:

Ḣ = − 1

2γ

σ̇ 2

σ 2
+ 4H

σ̇

σ
+ V eff,σ

σ (1 + 6γ )
. (5)

It is now useful to introduce the hierarchy of Hubble flow func-
tions [15]: d ln|εn|/dN ≡ εn+1 with n � 0, ε0 ≡ H(ti)/H , ti is some
initial time and N ≡ ln a

a(ti )
is the number of e-folds. In scalar-

tensor gravity it is also necessary to introduce another hierarchy
associated with σ : d ln|δn|/dN ≡ δn+1 with n � 0, δ0 ≡ σ/σ (ti).
Thus in IG the cosmological perturbations depend on these two
hierarchies which completely specify the background evolution. As
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usual, one can replace Eqs. (2), (3) with an equivalent set written
in terms of the two hierarchies. However the two hierarchies are
not independent and the following relation holds:

ε1 = δ1

1 + δ1

(
δ1

2γ
+ 2δ1 + δ2 − 1

)
. (6)

Inflation in IG has a richer phenomenology than in EG: inflation
could occur for large δ1 and a super-inflationary stage [17] could
take place for |δ1| � 1, (ε1 = −Ḣ/H2 < 0) in the Jordan frame with
δ1 > 0 and 2δ1 + δ2 + δ1/(2γ ) < 1 or vice versa.

Scalar curvature perturbations produced by quantum fluctua-
tions of the inflaton during the accelerated stage are described by
R(x) = −Hδσ (x)/σ̇ in the uniform curvature gauge [16], where
δσ (x) is the scalar inflaton perturbation and is the correct field
variable to quantize. The Fourier component δσk of the inflaton
fluctuation, in the IG context, has been shown to satisfy the differ-
ential equation [16]:

¨δσk +
(

3H + Ż

Z

)
˙δσk +

[
k2

a2
− 1

a3 Zσδ1

(
a3 Z(σ δ1)

·)·
]
δσk = 0

(7)

where

Z = H2σ 2(1 + 6γ )

(σ̇ + Hσ)2
= 1 + 6γ

(1 + δ1)2
. (8)

Gravitational waves are also amplified from quantum fluctuations
during inflation; in IG the Fourier modes of tensor perturbations
satisfy:

ḧs,k + (3H + 2Hδ1)ḣs,k + k2

a2
hs,k = 0 (9)

where s = +,× denotes the two polarization states. We define the
power spectra of scalar curvature perturbations and tensor pertur-
bation as

P R(k) ≡ k3

2π2
|Rk|2 � P R(k∗)

(
k

k∗

)ns−1

(10)

and

Ph(k) ≡ 2k3

π2

(|h+,k|2 + |h×,k|2
) � Ph(k∗)

(
k

k∗

)nt

, (11)

respectively, where k∗ is a suitable pivot scale. It is important to
stress that through a conformal transformation the action in Eq. (1)
can be rewritten as EG involving the rescaled scalar field and met-
ric with a different potential: whereas the spectra of primordial
cosmological perturbations are conformal invariant, we prefer to
work in the original frame in Eq. (1).

As in EG with a standard scalar field with exponential potential,
exact inflationary solutions with a(t) ∼ t p (with t > 0 and p > 1)
exist for induced gravity with V (σ ) = λnσ

n/n [18] and

p = 1

ε1
= 2

1 + (n + 2)γ

(n − 4)(n − 2)γ
, σ (t) = S

t
2

(n−2)

, (12)

with 4 < n < 4 + √
2(6 + 1/γ ) or 4 − √

2(6 + 1/γ ) < n < 2 [19].
These are scaling solutions for which δ2 = 0 and

δ1 = − γ (n − 4)

1 + γ (n + 2)
, ε1 = γ (n − 2)(n − 4)

2 + 2γ (n + 2)
. (13)

The poles in n = 2,4 in the above equations correspond to de Sit-
ter solutions having a(t) ∝ eHt . The above scaling solution is also
found for a(t) ∼ (−t)p (with t < 0 and p < 0) but only for 2 <

n < 4: this solution characterizes a super-inflationary stage with
Ḣ > 0 and ends up in a future singularity (the Ricci scalar grows
with the arrow of time instead of decreasing). Let us note that in-
flation does not end for the above scaling solutions (just as in EG),
but cosmological perturbations can be solved exactly on such back-
grounds. The spectral index for scalar curvature perturbations is:

ns − 1 = d ln P R
d ln k

= 2γ (n − 4)2

γ (n − 4)2 − 2(6γ + 1)
(14)

where dns/d ln k = dnt/d ln k = 0 and nt = ns − 1. The exact tensor-
to-scalar ratio is given by

r = Ph(k)

P R(k)
= − 8nt

1 − nt
2

(15)

which agrees with the consistency condition of power-law inflation
in EG. On examining the behavior of (14) one has

ns − 1 < 0 when ρ ≡ γ (n − 4)2

2(1 + 6γ )
< 1 (16)

and ns − 1 is close to scale invariance (zero) only for ρ ∼ 0 and
ns − 1 > 2 for ρ > 1.

Let us now obtain general formulae for scalar and tensor spec-
tra in the slow-roll regime. As for EG, the potential and its deriva-
tives are given explicitly by the Hubble parameter and the coeffi-
cients of the hierarchies (εi, δi). On assuming δi � 1, we can invert
such relations obtaining (we only exhibit the first two):

δ1 � −γ σ
V eff,σ

(1 + 6γ )V
, (17)

δ2 � −γ σ 2 V eff,σσ

(1 + 6γ )V
+ δ1

(
δ1

γ
− 3

)
. (18)

From Eq. (17) we immediately see that the first slow-roll param-
eter in IG is roughly the square root of what we expect from EG.
Indeed through a conformal transformation to the Einstein frame
one can show that εEF

1 = δ2
1(1 + 6γ )/(2γ (1 + δ1)

2). Further, from
Eq. (17), it is easy to see that ε1 � −δ1 to lowest order for large γ .
The scalar power-spectrum is

P R(k∗) � AH2∗
4π2(1 + 6γ )δ2

1∗σ 2∗
� AV 3∗ (1 + 6γ )

12π2γ 3σ 6∗ V 2
effσ∗

(19)

with

A = [
1 − 2ε1∗ + C(δ1∗ + δ2∗ + ε1∗)

]
, (20)

where C = 2(2 − ln 2 − b), b is the Euler–Mascheroni constant and
all the above quantities with the subscript ∗ are evaluated when
k∗ crosses the Hubble radius. The scalar spectral index in Eq. (10)
is

ns − 1 = −2(δ1∗ + δ2∗ + ε1∗)

= 2γ σ 2∗
1 + 6γ

(
V eff,σσ∗

V∗
− 3V 2

eff,σ∗
2V 2∗

− 3V eff,σ∗
σ∗V∗

)
. (21)

Let us note that the above result for ns agrees with the calculation
in the Einstein frame, but does not agree with Ref. [20] where a
term of order δi is omitted. We also note V eff,σ is less than V to
the addition of radiative corrections of logarithmic form to the tree
potential.

Similarly, the tensor power spectrum is given by:

Ph(k∗) � 2(A − Cδ2∗)H2∗
π2γ σ 2∗

� 2(A − Cδ2∗)V∗
3π2γ 2σ 4∗

(22)

and
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Fig. 1. The WMAP 5 + BAO + SNIa constraints on ns [14] in absence of gravitational
waves with the condition 50 < N∗ < 70.

nt � −2(δ1∗ + ε1∗) � −δ2
1∗(1 + 6γ )

γ
. (23)

The above results lead to the standard tensor-to-scalar ratio r∗ �
−8nt∗ . We shall consider the following potentials leading to the
spontaneous breaking of scale invariance and Newton’s constant:

V CW = μ

8
σ 4

(
ln

σ 4

σ 4
0

− 1

)
+ μ

8
σ 4

0 (24)

where the breaking arises through a quantum effect, Coleman–
Weinberg (CW) type, and

V LG = μ

4

(
σ 2 − σ 2

0

)2
, (25)

where the breaking arises through a condensate, Landau–Ginzburg
(LG) type. Both large and small field configurations for the poten-
tials (24), (25) can lead to predictions in agreement with obser-
vations, for suitable values of γ and the parameters of the po-
tential, μ,σ0. In Fig. 1 we plotted the values of (σ ∗, γ ) in the
small field regime and assuming that k∗ = aH for 50–70 e-folds,
N∗ , before inflation ends. Lighter regions represent the obser-
vational constraints on the spectral index ns coming from the
WMAP 5 + BAO + SN Ia [14] and a 68% and 95% confidence level
(ns = 0.963 ± 0.014 and ns = 0.963 ± 0.028), darker regions rep-
resent the two intervals 50 < N∗ < 60 and 60 < N∗ < 70 (darker
area). Such a plot constraints γ to be � 3 × 10−3 in order to
fit observations. We note that small field regime in IG leads to
predictions very different from EG. For both CW and LG poten-
tials we obtain ns − 1 � −16γ /(1 + 2γ ). For small field potentials
as V (σ ) ∝ 1 − (σ /σ0)

n + · · · we obtain ns − 1 � −16γ /(1 + 6γ ).
For large field configurations, we obtain ns − 1 � −2/N∗(ns − 1 �
−1.5/N∗) for LG (CW) which leaves γ unconstrained. The ampli-
tude for scalar perturbations for the LG potential is

P R(k∗) �
{ μ

3π2γ
N2∗, γ � 1 (large and small field),

μ
72π2γ 2 N2∗, γ � 1 (large field).

(26)

WMAP 5 + BAO + SN Ia [14] require P R(k∗) = (2.445 ± 0.096) ×
10−9 [14]: from the above expression we observe that when γ � 1
μ need not be as small as the same self-coupling in EG [10–13].
For instance μ ∼ 0.5 is allowed for γ � 3 × 104; on requiring
γ σ 2

0 = M2
pl, it is clear that in general IG can incorporate the GUT

symmetry breaking scale for inflation [10–13].
In Fig. 2 we compared the WMAP 5 + BAO + SN Ia constraints

at the 68% (dotted contour) and the 95% (continuous contour)
Fig. 2. The WMAP 5+BAO+SN Ia constraints [14] in the (ns, r) plane. Each segment
shows the uncertainty on N∗ . The dashed line plots the consistency relation and the
points on such a line are for n = 6 and γ = 10−2,10−3,10−4 from the left to the
right.

confidence levels [14] with the prediction for the potentials (24),
(25) both in IG (continuous lines) and in EG (dashed lines) frame-
work: each point represents a different choice for γ (or ξ ≡ σ 2

0 /M2
P

in EG) and N∗ (identical markers, from left to right, identify N∗ =
50,60,70). We observe that in IG for both the above potentials,
the small field inflation with γ � 10−3 is disfavored by observa-
tions confirming what was found in the ns analysis. Again large
field inflation in IG fits observations independently of γ in con-
trast with the same regime in EG which requires ξ � 103. It is
however worth noting that both the potentials (24), (25), although
very similar to a simple quartic potential in this regime, fit ob-
servations well, independently of μ and σ0, in contrast with such
a potential in EG which leads to results lying far away from the
95% region in the same e-folds interval. Let us note that the γ � 1
limit leads to predictions very close to EG with large ξ .

The general slow-roll formula (at leading order) for the tensor-
to-scalar ratio is:

r � 8
V 2

eff,σ∗
V 2∗

γ σ 2∗
1 + 6γ

= 8M2
P

1 + 6γ

V 2
eff,σ∗
V 2∗

σ 2∗
σ 2

0

(27)

where in the second line we have introduced the reduced Planck
mass fixed after inflation by M2

P = γ σ 2
0 (which of course does not

apply to runaway potentials as the ones leading to exact solutions).
Several comments are in order to compare the result in IG with
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the standard rEG = 8M2
P V 2

σ∗/V 2∗ in EG with the same potential V .
As a first point, let us note that V eff,σ∗ occurs in the numerator in-
stead of the standard first derivative of the potential. Secondly, the
factor (1+6γ )−1 can only decrease r with respect to EG, in partic-
ular for γ � 1. Thirdly, the factor σ 2∗ /σ 2

0 is a (de)amplification for
(small) large field configurations. The first point has different ef-
fects for different potentials. For V ∝ σ 4 in LF configurations, r is
drastically reduced. Vice versa, for SF configurations 4V∗/σ∗ can
be much larger than Vσ∗ , thus increasing r. All these effects are
the explanation for the behavior observed for r in Fig. 2.

Let us now study the oscillating regime occurring for σ � σ0
and consider the symmetry-breaking potential in Eq. (25) for the
sake of simplicity. We find an approximate analytic solution given
by:

σ(t) = σ0 + 2

t

√
γ

3μ
sin(ωt) + O

(
1

t2

)
, (28)

H(t) � 2

3t

[
1 −

√
6γ

1 + 6γ
cos(ωt)

]
+ O

(
1

t2

)
, (29)

where ω = σ0
√

2μ/(1 + 6γ ). On fixing the Planck mass after in-
flation by M2

pl = γ σ 2
0 and requiring curvature perturbations in

agreement with observations, the frequency of oscillations ω is
� 2.5×1013 GeV for γ � 1 (and twice as large for γ � 1). For the
regime of small oscillations this study is equivalent to a mass term
obtained from the oscillations of σ around a minimum of a poten-
tial with V (σ0) = 0. Oscillations in the Hubble parameter appear
to leading order in Eq. (29) and not to O(t−2) as in the regime of
coherent oscillations for a massive field in EG; as a consequence
Ḣ + 3H2/2 is not approximatively zero when averaging through
oscillation as in EG [21], i.e. we do not have a standard matter
dominated stage during the coherent oscillation regime. Indeed, on
considering the IG system in Eqs. (2)–(3) as EG with M2

pl = γ σ 2
0 ,

we obtain weff = −3γ /(1 + 9γ ) as equation of state for the effec-
tive matter component [8,22].

Eq. (29) can be used to study the evolution of δσ during the
coherent oscillations of σ : on using Eq. (7) the variable δσ̃k =√

a3 Zδσk can be recast in a Mathieu-like form:

d2δσ̃k

d(ωt)2
+ [

A(t) + 2q1(t) sin(2ωt) + 2q2(t) sin(ωt)
]
δσ̃k = 0 (30)

analogously to the EG case [23]. The leading terms in q1 and
q2 originate from the metric and the potential contributions re-
spectively, and both decay as 1/t , further A(t) = k2/(a2ω2) +
1 + O(t−2). Because of the two oscillating terms the time de-
pendent frequency in Eq. (30) leads to beats. We obtain q2 =√

27γ /(2(1 + 6γ ))/(ωt) and q1 = 2/(ωt) (the latter is the same
as the EG case [23]).

The consequence of coherent oscillations on δσ̃k differs from
the resonance for a test scalar field χ coupled to an inflaton
through g2σ 2χ2 [24]: for V (σ ) = m2σ 2/2, q2(t) ∼ O(t−2) de-
cays faster than k2/a2 (as a consequence the resonance shuts-off
asymptotically for large times although it started in the broad
regime), whereas for an inflaton potential as in Eqs. (24), (25),
q2(t) ∼ O(1/t) and χk would end in the second resonance band
(this would hold for the inflaton fluctuations in absence of met-
ric perturbations as well). According to Eq. (30), instead, all
wavelengths end asymptotically in the first resonance band since
q1(t) 
= 0. Thus for short-scale modes with H � k/a � ω, δσk os-
cillates with a constant amplitude instead of decaying [22]. Note
that such a gravity mediated self-decay of the inflaton in its short-
scale fluctuations also exists for V (φ) = m2φ2/2 or for a potential
with a symmetry-breaking term in EG [25]. Although oscillating
terms decaying as 1/t appear in the equation for gravitational
waves – on rewriting Eq. (9) in terms of the variable a3/2σhk –
such terms do not affect the standard behavior of short-scale grav-
itational waves.

It is also interesting to study a possible connection of this infla-
tionary stage with the problem of dark energy, which can also be
modeled in IG through simple potentials [7,8]. Work in this direc-
tion is in progress [22].
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