In a class of generalized gravity theories with general couplings between the
scalar field and the scalar curvature in the Lagrangian, we can describe the
quantum generation and the classical evolution of both the scalar and tensor
structures in a simple and unified manner. An accelerated expansion phase based
on the generalized gravity in the early universe drives microscopic quantum
fluctuations inside a causal domain to expand into macroscopic ripples in the
spacetime metric on scales larger than the local horizon. Following their
generation from quantum fluctuations, the ripples in the metric spend a long
period outside the causal domain. During this phase their evolution is
characterized by their conserved amplitudes. The evolution of these
fluctuations may lead to the observed large scale structures of the universe
and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur