42 research outputs found

    Los cines antiguos del Área Metropolitana de Guadalajara

    Get PDF
    Esta es la segunda parte de “Permanencia Voluntaria. Cines antiguos del AMG”, de Primavera de 2018, en la que recuperamos la memoria de salas de exhibición cinematográfica que por factores económicos, políticos y sociales se han transformado o han sido abandonadas. La posibilidad de retomar las voces que formaron la historia de las salas en el AMG y las maneras en que la transformación del medio cinematográfico se han manifestado resulta relevante e invita al no–olvido de estos espacios

    Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution

    Get PDF
    Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.Universidad de Costa Rica/[814-B8-257]/UCR/Costa RicaUniversidad de Costa Rica/[814-B6-140]/UCR/Costa RicaIDEA WILD/[]//Estados UnidosSociedad Colombiana de Orquideología/[]/SCO/ColombiaFundação de Amparo à Pesquisa do Estado de São Paulo/[11/08308-9]/FAPESP/BrasilFundação de Amparo à Pesquisa do Estado de São Paulo/[13/19124-1]/FAPESP/BrasilSwiss Orchid Foundation/[]//SuizaRoyal Botanic Gardens, Kew/[]//InglaterraSwedish Research Council/[2019-05191]//SueciaSwedish Foundation for Strategic Research/[FFL15-0196]/SSF/SueciaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Jardín Botánico Lankester (JBL

    Biogeographical analyses to facilitate targeted conservation of orchid diversity hotspots in Costa Rica

    Get PDF
    Aim: We conduct a biogeographical assessment of orchids in a global biodiversity hotspot to explore their distribution and occurrences of local hotspots while identifying geographic attributes underpinning diversity patterns. We evaluate habitat characteristics associated with orchid diversity hotspots and make comparisons to other centres of orchid diversity to test for global trends. The ultimate goal was to identify an overall set of parameters that effectively characterize critical habitats to target in local and global orchid conservation efforts. Location: Costa Rica; Mesoamerica. Taxon: Orchidaceae. Methods: Data from an extensive set of herbarium records were used to map orchid distributions and to identify diversity hotspots. Hotspot data were combined with geographic attribute data, including environmental and geopolitical variables, and a random forest regression model was utilized to assess the importance of each variable for explaining the distribution of orchid hotspots. A likelihood model was created based on variable importance to identify locations where suitable habitats and unidentified orchid hotspots might occur. Results: Orchids were widely distributed and hotspots occurred primarily in mountainous regions, but occasionally at lower elevations. Precipitation and vegetation cover were the most important predictive variables associated with orchid hotspots. Variable values underpinning Costa Rican orchid hotspots were similar to those reported at other sites worldwide. Models also identified suitable habitats for sustaining orchid diversity that occurred outside of known hotspots and protected areas. Main conclusions: Several orchid diversity hotspots and potentially suitable habitats occur outside of known distributions and/or protected areas. Recognition of these sites and their associated geographic attributes provides clear targets for optimizing orchid conservation efforts in Costa Rica, although certain caveats warrant consideration. Habitats linked with orchid hotspots in Costa Rica were similar to those documented elsewhere, suggesting the existence of a common biogeographical trend regarding critical habitats for orchid conservation in disparate tropical regions.Universidad de Puerto Rico/[]/UPR/Puerto RicoUniversidad de Costa Rica/[]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Jardín Botánico Lankester (JBL

    Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping

    Get PDF
    Snakebite antivenom is a 120 years old invention based on polyclonal mixtures of antibodies purified from the blood of hyper-immunized animals. Knowledge on antibody recognition sites (epitopes) on snake venom proteins is limited, but may be used to provide molecular level explanations for antivenom cross-reactivity. In turn, this may help guide antivenom development by elucidating immunological biases in existing antivenoms. In this study, we have identified and characterized linear elements of B-cell epitopes from 870 pit viper venom protein sequences by employing a high-throughput methodology based on custom designed high-density peptide microarrays. By combining data on antibody-peptide interactions with multiple sequence alignments of homologous toxin sequences and protein modelling, we have determined linear elements of antibody binding sites for snake venom metalloproteases (SVMPs), phospholipases A2s (PLA2s), and snake venom serine proteases (SVSPs). The studied antivenom antibodies were found to recognize linear elements in each of the three enzymatic toxin families. In contrast to a similar study of elapid (non-enzymatic) neurotoxins, these enzymatic toxins were generally not recognized at the catalytic active site responsible for toxicity, but instead at other sites, of which some are known for allosteric inhibition or for interaction with the tissue target. Antibody recognition was found to be preserved for several minor variations in the protein sequences, although the antibody-toxin interactions could often be eliminated completely by substitution of a single residue. This finding is likely to have large implications for the cross-reactivity of the antivenom and indicate that multiple different antibodies are likely to be needed for targeting an entire group of toxins in these recognized sites.Novo Nordisk Foundation/[NNF13OC0005613]/NNF/DinamarcaNovo Nordisk Foundation/[NNF16OC0019248]/NNF/DinamarcaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Métodos de investigación en producción animal

    No full text
    284 páginas pdf.Este documento posee información acerca de los principales aspectos del método científico y sus procedimientos

    Data from: Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids

    No full text
    Species population genetics could be an important factor explaining variation in clade species richness. Here we use newly generated AFLP data to test whether five pairs of sister clades of Costa Rican orchids that differ greatly in species richness also differ in average neutral genetic differentiation within species, expecting that if the strength of processes promoting differentiation within species is phylogenetically heritable, then clades with greater genetic differentiation should diversify more. Contrary to expectation, neutral genetic differentiation does not correlate directly with total diversification in the clades studied. Neutral genetic differentiation varies greatly among species and shows no heritability within clades. Half of the variation in neutral genetic differentiation among populations can be explained by ecological variables, and species-level traits explain the most variation. Unexpectedly, we find no isolation by distance in any species, but genetic differentiation is greater between populations occupying different niches. This pattern corresponds with those observed for microscopic eukaryotes and could reflect effective widespread dispersal of tiny and numerous orchid seeds. Although not providing a definitive answer to whether population genetics processes affect clade diversification, this work highlights the potential for addressing new macroevolutionary questions using a comparative population genetic approach

    table.S7.fordryad

    No full text
    Table S7 from the Supplementary Materials - Branch circumference mean and variance for all study species over all sampled plants from each species. Dryadella odontostele was only found growing on a branch once, and so no variance is given

    all spp AFLP allele tables

    No full text
    Final AFLP allele tables for all study species. See Readme and manuscript for more details

    table.S3.fordryad

    No full text
    Table S3 from the Supplementary Materials - Details of AFLP method used for each study species. A star by the number of preamplification PCR cycles indicates that a 2 min extension time was used instead of the standard 2.5 min

    pairwise.data.fordryad

    No full text
    Pairwise data for comparisons of study populations - population genetic distances, geographical distances, and enviromental differences. See general Readme and manuscript for more details
    corecore