46 research outputs found

    PlcRa, a new quorum-sensing regulator from Bacillus cereus, plays a role in oxidative stress responses and cysteine metabolism in stationary phase

    Get PDF
    We characterized a new quorum-sensing regulator, PlcRa, which is present in various members of the B. cereus group and identified a signaling heptapeptide for PlcRa activity: PapRa7. We demonstrated that PlcRa is a 3D structural paralog of PlcR using sequence analysis and homology modeling. A comparison of the transcriptomes at the onset of stationary phase of a ¿plcRa mutant and the wild-type B. cereus ATCC 14579 strain showed that 68 genes were upregulated and 49 genes were downregulated in the ¿plcRa mutant strain (>3-fold change). Genes involved in the cysteine metabolism (putative CymR regulon) were downregulated in the ¿plcRa mutant strain. We focused on the gene with the largest difference in expression level between the two conditions, which encoded -AbrB2- a new regulator of the AbrB family. We demonstrated that purified PlcRa bound specifically to the abrB2 promoter in the presence of synthetic PapRa7, in an electrophoretic mobility shift assay. We further showed that the AbrB2 regulator controlled the expression of the yrrT operon involved in methionine to cysteine conversion. We found that the ¿plcRa mutant strain was more sensitive to hydrogen peroxide- and disulfide-induced stresses than the wild type. When cystine was added to the culture of the ¿plcRa mutant, challenged with hydrogen peroxide, growth inhibition was abolished. In conclusion, we identified a new RNPP transcriptional regulator in B. cereus that activated the oxidative stress response and cysteine metabolism in transition state cells

    CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders

    Get PDF
    Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD

    Structural Insights into the Quinolone Resistance Mechanism of Mycobacterium tuberculosis DNA Gyrase

    Get PDF
    Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistant tuberculosis, we performed combined functional, biophysical and structural studies of the two individual domains constituting the catalytic DNA gyrase reaction core, namely the Toprim and the breakage-reunion domains. This allowed us to produce a model of the catalytic reaction core in complex with DNA and a quinolone molecule, identifying original mechanistic properties of quinolone binding and clarifying the relationships between amino acid mutations and resistance phenotype of M. tuberculosis DNA gyrase. These results are compatible with our previous studies on quinolone resistance. Interestingly, the structure of the entire breakage-reunion domain revealed a new interaction, in which the Quinolone-Binding Pocket (QBP) is blocked by the N-terminal helix of a symmetry-related molecule. This interaction provides useful starting points for designing peptide based inhibitors that target DNA gyrase to prevent its binding to DNA

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Le rapport annuel des sociétés d’assurance-vie au département des assurances

    No full text
    Nous donnons ici la première partie d’une étude de M. André G. Leroux sur les rapports faits chaque année au surintendant des assurances du gouvernement d’Ottawa par les assureurs-vie. Les chiffres et les tableaux de ces rapports sont la base du gros volume que le surintendant des assurances remet au gouvernement chaque année et qui donne sur les affaires d’assurances au Canada des aperçus précis. Ces données permettent également au surintendant d’exercer la surveillance d’ensemble que la loi lui confie. –

    Posterior pharyngeal wall schwannoma

    No full text
    corecore