7 research outputs found

    Rules extraction from neural networks applied to the prediction and recognition of prokaryotic promoters

    Get PDF
    Promoters are DNA sequences located upstream of the gene region and play a central role in gene expression. Computational techniques show good accuracy in gene prediction but are less successful in predicting promoters, primarily because of the high number of false positives that reflect characteristics of the promoter sequences. Many machine learning methods have been used to address this issue. Neural Networks (NN) have been successfully used in this field because of their ability to recognize imprecise and incomplete patterns characteristic of promoter sequences. In this paper, NN was used to predict and recognize promoter sequences in two data sets: (i) one based on nucleotide sequence information and (ii) another based on stability sequence information. The accuracy was approximately 80% for simulation (i) and 68% for simulation (ii). In the rules extracted, biological consensus motifs were important parts of the NN learning process in both simulations

    A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors

    Get PDF
    IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors

    Loss of sleep spindle frequency deceleration in Obstructive Sleep Apnea

    No full text
    Objective: Sleep spindles have been suggested as surrogates of thalamo-cortical activity. Internal frequency modulation within a spindle's time frame has been demonstrated in healthy subjects, showing that spindles tend to decelerate their frequency before termination. We investigated internal frequency modulation of slow and fast spindles according to Obstructive Sleep Apnea (OSA) severity and brain topography. Methods: Seven non-OSA subjects and 21 patients with OSA contributed with 30 min of Non-REM sleep stage 2, subjected to a Matching pursuit procedure with Gabor chirplet functions for automatic detection of sleep spindles and quantification of sleep spindle internal frequency modulation (chirp rate). Results: Moderate OSA patients showed an inferior percentage of slow spindles with deceleration when compared to Mild and Non-OSA groups in frontal and parietal regions. In parietal regions, the percentage of slow spindles with deceleration was negatively correlated with global apnea-hypopnea index (r s = -0.519, p = 0.005). Discussion: Loss of physiological sleep spindle deceleration may either represent a disruption of thalamo-cortical loops generating spindle oscillations or some compensatory mechanism, an interesting venue for future research in the context of cognitive dysfunction in OSA. Significance: Quantification of internal frequency modulation (chirp rate) is proposed as a promising approach to advance description of sleep spindle dynamics in brain pathology. © 2013 International Federation of Clinical Neurophysiology

    Triplet entropy analysis of hemagglutinin and neuraminidase sequences measures influenza virus phylodynamics

    No full text
    The influenza virus has been a challenge to science due to its ability to withstand new environmental conditions. Taking into account the development of virus sequence databases, computational approaches can be helpful to understand virus behavior over time. Furthermore, they can suggest new directions to deal with influenza. This work presents triplet entropy analysis as a potential phylodynamic tool to quantify nucleotide organization of viral sequences. The application of this measure to segments of hemagglutinin (HA) and neuraminidase (NA) of H1N1 and H3N2 virus subtypes has shown some variability effects along timeline, inferring about virus evolution. Sequences were divided by year and compared for virus subtype (H1N1 and H3N2). The nonparametric Mann-Whitney test was used for comparison between groups. Results show that differentiation in entropy precedes differentiation in GC content for both groups. Considering the HA fragment, both triplet entropy as well as GC concentration show intersection in 2009, year of the recent pandemic. Some conclusions about possible flu evolutionary lines were drawn. © 2013 Elsevier B.V
    corecore