14 research outputs found

    Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions

    Get PDF
    Nanowires are filamentary crystals with a tailored diameter that can be obtained using a plethora of different synthesis techniques. In this review, we focus on the vapor phase, highlighting the most influential achievements along with a historical perspective. Starting with the discovery of VLS, we feature the variety of structures and materials that can be synthesized in the nanowire form. We then move on to establish distinct features such as the three-dimensional heterostructure/doping design and polytypism. We summarize the status quo of the growth mechanisms, recently confirmed by in situ electron microscopy experiments and defining common ground between the different synthesis techniques. We then propose a selection of remaining defects, starting from what we know and going toward what is still to be learned. We believe this review will serve as a reference for neophytes but also as an insight for expertsin an effort to bring open questions under a new light

    Questioning liquid droplet stability on nanowire tips: from theory to experiment

    Get PDF
    Liquid droplets sitting on nanowire (NW) tips constitute the starting point of the vapor-liquid-solid method of NW growth. Shape and volume of the droplet have been linked to a variety of growth phenomena ranging from the modification of growth direction, NW orientation, crystal phase, and even polarity. In this work we focus on numerical and theoretical analysis of the stability of liquid droplets on NW tips, explaining the peculiarity of this condition with respect to the wetting of planar surfaces. We highlight the role of droplet pinning at the tip in engineering the contact angle. Experimental results on the characteristics of In droplets of variable volume sitting on the tips or side facets of InAs NWs are also provided. This work contributes to the fundamental understanding of the nature of droplets contact angle at the tip of NWs and to the improvement of the engineering of such nanostructures

    Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality

    Get PDF
    Compound semiconductors exhibit an intrinsic polarity, as a consequence of the ionicity of their bonds. Nanowires grow mostly along the (111) direction for energetic reasons. Arsenide and phosphide nanowires grow along (111)B, implying a group V termination of the (111) bilayers. Polarity engineering provides an additional pathway to modulate the structural and optical properties of semiconductor nanowires. In this work, we demonstrate for the first time the growth of Ga-assisted GaAs nanowires with (111)A-polarity, with a yield of up to ∼50%. This goal is achieved by employing highly Ga-rich conditions which enable proper engineering of the energies of A and B-polar surfaces. We also show that A-polarity growth suppresses the stacking disorder along the growth axis. This results in improved optical properties, including the formation of AlGaAs quantum dots with two orders or magnitude higher brightness. Overall, this work provides new grounds for the engineering of nanowire growth directions, crystal quality and optical functionality

    LTCC and thick-film ceramic magnetic sensors for tokamak nuclear fusion

    Get PDF
    The present contribution gives an overview of our work on non-conventional magnetic coil sensors for diagnostics and plasma stability control of nuclear fusion experiments in tokamaks. Instead of wire wound around a core, these devices consist of printed conductor wire coils on ceramic substrates, and are based on LTCC (low-temperature co-fired ceramic) and thick-film technology, which allow creation of monolithic multilayer coils with excellent stability. For 3D sensing, an innovative modular design combining LTCC coils and an alumina base has been developed. Finally, the important aspects of integration, manufacturing, mounting and interconnection are discussed

    Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires

    Get PDF
    Achieving quantum confinement by bottom-up growth of nanowires has so far been limited to the ability of obtaining stable metal droplets of radii around 10 nm or less. This is within reach for gold-assisted growth. Because of the necessity to maintain the group III droplets during growth, direct synthesis of quantum sized structures becomes much more challenging for self-assisted III–V nanowires. In this work, we elucidate and solve the challenges that involve the synthesis of gallium-assisted quantum-sized GaAs nanowires. We demonstrate the existence of two stable contact angles for the gallium droplet on top of GaAs nanowires. Contact angle around 130° fosters a continuous increase in the nanowire radius, while 90° allows for the stable growth of ultrathin tops. The experimental results are fully consistent with our model that explains the observed morphological evolution under the two different scenarios. We provide a generalized theory of self-assisted III–V nanowires that describes simultaneously the droplet shape relaxation and the NW radius evolution. Bistability of the contact angle described here should be the general phenomenon that pertains for any vapor–liquid–solid nanowires and significantly refines our picture of how nanowires grow. Overall, our results suggest a new path for obtaining ultrathin one-dimensional III–V nanostructures for studying lateral confinement of carriers

    Template-Assisted Scalable Nanowire Networks

    Get PDF
    This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlTopological qubits based on Majorana Fermions have the potential to revolutionize the emerging field of quantum computing by making information processing significantly more robust to decoherence. Nanowires are a promising medium for hosting these kinds of qubits, though branched nanowires are needed to perform qubit manipulations. Here we report a gold-free templated growth of III-V nanowires by molecular beam epitaxy using an approach that enables patternable and highly regular branched nanowire arrays on a far greater scale than what has been reported thus far. Our approach relies on the lattice-mismatched growth of InAs on top of defect-free GaAs nanomembranes yielding laterally oriented, low-defect InAs and InGaAs nanowires whose shapes are determined by surface and strain energy minimization. By controlling nanomembrane width and growth time, we demonstrate the formation of compositionally graded nanowires with cross-sections less than 50 nm. Scaling the nanowires below 20 nm leads to the formation of homogeneous InGaAs nanowires, which exhibit phase-coherent, quasi-1D quantum transport as shown by magnetoconductance measurements. These results are an important advance toward scalable topological quantum computing

    Doping challenges and pathways to industrial scalability of III–V nanowire arrays

    No full text
    Semiconductor nanowires (NWs) have been investigated for decades, but their application into commercial products is still difficult to achieve, with triggering causes related to the fabrication cost and structure complexity. Dopant control at the nanoscale greatly narrows their exploitation as components for device integration. In this context, doping appears the truly last missing piece of the puzzle for III–V NWs, for them to become commercially exploitable. In this paper, we review the doping of bottom up III–V NW arrays grown by molecular beam epitaxy and metal-organic vapor phase epitaxy, aiming to link materials science challenges with the critical aspect of device design. First, the doping methods and mechanisms are described, highlighting the differences between self-assembled and ordered NW arrays. Then, a brief overview of the available tools for investigating the doping is offered to understand the common strategies used for doping characterization. Both aspects are crucial to discuss the recent advancements in reproducibility and up-scalability, which are discussed in view of large area fabrication for industrial production. Finally, the most common doping-related challenges are presented together with the latest solutions to achieve high performing NW-based devices. On this basis, we believe that new insights and innovative findings discussed herein will open the low dimensional materials era, on the premise of multidisciplinary collaborative works of all the sectors involved in the design and optimization of commercial products

    Porous thick-film silver metallisation for thermally mismatched brazing operations in tokamak magnetic sensor

    No full text
    A novel sensor based on thick-film + LTCC (low-temperature cofired ceramic) technology has been recently developed for sensing high-frequency 3D magnetic fields in tokamak fusion devices. For integration within the walls of the tokamak, the sensor has to be connected to the mineral-insulated cabling, which is carried out by brazing to ensure sufficient thermal stability. However, thermal mismatch stresses between the braze and the cable vs. the alumina substrate may cause local cracking of the latter during cooling, as the basic dense silver metallisation of the alumina does not provide a sufficient degree of stress decoupling. To address this issue, a series of porous metallisations have been formulated by incorporation of a mix of silver and fugitive graphite powder into a thick-film paste. To allow co-firing of thick, multi-layered prints. Such porous metallisations have allowed successful brazing operations, without cracking of the alumina substrate. Metallisations were assessed by measuring their electrical resistivity and shear stress have been realised as preliminary results to measure the influence of the porosity on the maximal stress before cracking
    corecore