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ABSTRACT: Nanowires are filamentary crystals with a tailored diameter that can be

the vapor phase, highlighting the most influential achievements along with a historical

obtained using a plethora of different synthesis techniques. In this review, we focus on @ T g
.. : (
® © i )

perspective. Starting with the discovery of VLS, we feature the variety of structures and
materials that can be synthesized in the nanowire form. We then move on to establish
distinct features such as the three-dimensional heterostructure/doping design and polytypism. We summarize the status quo of
the growth mechanisms, recently confirmed by in situ electron microscopy experiments and defining common ground between
the different synthesis techniques. We then propose a selection of remaining defects, starting from what we know and going
toward what is still to be learned. We believe this review will serve as a reference for neophytes but also as an insight for experts

in an effort to bring open questions under a new light.
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1. INTRODUCTION

Nanowires are filamentary crystals with a tailored aspect ratio
ranging between few and hundred nanometers. Their particular
shape and dimensions render them particularly attractive for a
large variety of applications and open new perspectives in
many others. Reviews and manuals on the synthesis,
applications and properties of nanowires are abundant.'”>*®
An up-to-date overview on the properties and applications can
be found in this issue.

Among several interesting properties, nanowires offer two
key advantages in the form of their excellent material quality
and the stunning design freedom associated with their
morphology. These characteristics open new possibilities
both in the advance of engineering and fundamental science.
Historically, the bottom-up growth vapor phase is celebrated
for providing the highest degree of materials perfection.
Opposed to this, the top down approach can potentially lead to
defected surfaces and poor control on the resulting facets, with
some exceptions.”””" Several breakthroughs have conferred
nanowires the reputation for outstanding functional properties
and design/engineering of materials at the nanoscale level

W ACS Publications  © xxxx American Chemical Society

This review provides a historical review of what we believe are
the main quantum leaps. This gives us the standpoint to
conclude with a detailed perspective on what may be the future
outcomes, milestones, and challenges to face.

2. VAPOR PHASE GROWTH: A HISTORICAL
PERSPECTIVE

Nanowires were not born as such. Initial works on the field
referred to these structures as whiskers. Whiskers were more of
a curiosity-driven experiment of crystal growth than an
achievement or breakthrough. They were considered as single
crystalline filaments, exhibiting improved mechanical proper-
ties with respect to the bulk counterparts.’”’ Whiskers were
obtained by the precipitation of vapor in slight under-
supersaturation.”” Historically, the first significant milestone
for vapor phase growth of nanowires is the work from Wagner
and Ellis on the vapor—liquid—solid mechanism, VLS.** For
the first time, it was realized that a liquid metal droplet
(impurity) can mediate the crystallization of silicon at a lower
temperature. Crystallization of Si at low temperatures was
achieved by alloying gold with silicon for which the eutectic
temperature is as low as 360 °C."”** Silicon tetrachloride,
SiCl,, was provided as the vapor phase as a silicon growth
precursor. SiCl, would decompose at the gold surface at
temperature below its pyrolysis. Alternative to SiCl,, silane
(SiH,) or pure Si can also be used for VLS growth of silicon
nanowires.”” >’ Silicon would then form an alloy with the gold
until it would melt. Upon supersaturation, silicon would
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precipitate underneath the droplet.‘q’8 The liquid droplet would
define both the location of the growth and the lateral size of
the nanowire. This process is schematically drawn in Figure
la—c.

Figure 1. An overview of possible nanostructures/heterostructures
using VLS and/or VS growth. (a) The primary catalyst droplet,
followed by the formation of a eutectic in (b). (c) The formation of
the stem wire that can be used to produce (h) axial heterostructure or
(d) by removing the droplet catalyst to produce (e), (f) branched
“tree like” structure, or (g) radial heterostructure. (i) From openings
in an oxide mask, one can also produce (j) nanowires, (k)
nanomembranes, or (1) networks by selective area epitaxy (SAE)
growth.

VLS has had a major impact in the area of crystal growth, as
the main grinciple can be applied to a broad variety of material
systems.””*' Still today, it is probably the most commonly
used method for the synthesis of nanowires. The liquid
component of VLS plays a central role in the process: it not
only provides a nucleation point for the solid nanowire, but it
fosters the gathering and in some cases the decomposition of
precursors. It is because of the latter that it is often called
“catalyst” or “physical catalyst” when it does not lead to a
reduction of the activation energy for precursor decom-
position.

As it was conceived in the early stages, VLS could have been
of capital technological importance as it would have allowed
the production of Si ingots at a lower thermal budget.
Contamination of the Si by the metal used slowed down the
activities in this area. Wagner and Ellis did not show particular
interest in applying VLS at the nanoscale. Their discovery did
not reveal to be a real breakthrough until few decades later at
the avenue of nanotechnology. The discovery of fullerenes*”
sparked the interest in nanoscale carbon allotropes, including
carbon nanotubes (CNTs).*> CNTs were obtained from the
vapor phase and most commonly by using a ferromagnetic (Fe,
Ni, Co) nanoparticle as seed.”* At least in the early stages,
CNTs were obtained also in the vapor phase.*> CNTs could be
obtained in relatively high volumes in the form of black
powder.** For the fabrication of devices, they were dispersed
onto a substrate by previously diluting them in a solution. The
growth mechanisms of CNTs and the role of the metal
nanoparticles in deciding the chiralil}f was a very vivid field of
research for at least two decades.” Transmission electron
microsco%y and theory played a very important role in this
progress.”” ' CNTs renewed the interest in filamentary
structures, allowing VLS to be recalled a second time.>?
Pioneers like Lieber, Yang, and Samuelson demonstrated that

high quality nanowire structures could be obtained by
VLS.>7° Their ideas gave birth to a whole new area of
research whose momentum is still increasing today.

Nanowires have been extremely successful as building blocks
in nanotechnology research and in proposing novel concepts in
domains traditionally dominated by non-nanotech approaches.
This success relies in the high versatility of these structures
both in growth possibilities and in their functionality, which
opens new grounds for existing and novel applications. A few
pionneering groups sparked enthusiasm in the synthesis of
materials in the nanowire form, initially by demonstrating
superior properties with respect to the bulk.””*® This
recognition inspired research on the synthesis of nanowires
in many different materials systems such as ZnO, Ge, Si, and
GaN.*"*#*%% Lieber and his group recognized very early on
that the nanowire geometry and the VLS provide the setting
for combining materials in a very different manner than
classical thin film or bulk crystal growth.”* He and his group
demonstrated the nanowire composition can be varied
abruptly or in a graded manner along and across the nanowire
axis. Mastery of the composition on the nanoscale is especially
relevant in the field of semiconductors. Aligning materials of
different bandgap forming heterostructures results in the
formation of internal fields that can localize, store, separate,
and/or displace carriers.””®" What is particularly novel and
attractive with the nanowire geometry is that heterostructure
formation can occur in three dimensions.®>~°® Examples of this
are depicted in Figure 1h—f. In addition, eg)itaxy is no longer
limited by the condition of lattice match.” In this particular
morphology, the strain can relax in a more effective manner,
providing the setting for novel heterostructures. Strain
relaxation is much more effective for axial than for radial
structures.””*® One should also note that in the eventual case
that dislocations will form in nanowire heterostructures, they
are often of the misfit kind.® In addition, they do not
significantly affect the functionality of the materials/devi-
ces.”””" Finally, one should highlight other design oppor-
tunities provided by selective area growth on a patterned
substrate, as shown in Figure 1j—I. Here, restricting epitaxy in
nanoscale regions of a substrate allows for additional nanowire
geometries, junctions, and heterostructure formation.

Figure 2 depicts the extensive materials deployment of vapor
phase growth of nanowires. To emphasize this, we have
adopted the scheme of the periodic table of the elements,
highlighting the elemental components found in this crystalline
form. Starting with single elemental structures, we find
nanowires made of transition metals: Ti, Fe, Co, Ni, etc.
The applications envisioned for these structures are
composites, spintronics, and interconnects. We find then
single elemental semiconductors, mainly group IV, such as C
(diamond), Si, Ge, and Sn. Finally, there is a large range of
compounds from III-Vs, II-Vs, and oxides.””™®® Overall, this
figure shows the universality of the one-dimensional structures
along many materials systems as well as their use in a vast
number of applications.

The mastery of the composition in nanowires also apply to
doping schemes. The ability to engineer the electrical
conductivity through impurity doping is an essential property
of semiconductors and thus a necessary step for the
implementation of semiconductor nanowire devices. This
was recognized early on. Already in the late 1990s Hiruma et
al. provided evidence of doping of GaAs nanowires.’”
Interestingly, the nanowire configuration allows for three-
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Figure 2. This scheme shows the variety of materials that can be used to build nanowires using vapor-phase growth. Examples of works are shown
here such as (a) SiN,”* (b) SiC,”* (c) SiGe heterostructures,74 (d) Si,”° (e) Ge,7 (f) and (g) ZnO 777 (h) S 0, () W, (§) Cu,*" (k) Ag®** (1)

# (m) InSb and InAs heterostructures,®* (n) GaAs,* (o) InAs,*® (p) CdSe,*”

(q) Zn3P,,* and (r) InP.*’ Adapted with permission from ref 72.

Copyright 2003 Elsevier. (d) Adapted with permission from ref 75. Copyright 1964 American Institute of Physics. (f) and (g) Adapted with
permission from refs 77 and 78, respectively. Copyright 2002 and 2005 American Institute of Physics and Nature, respectively. (h) Adapted with
permission from ref 79. Copyright 2009 Nature. (i) Adapted with permission from ref 80. Copyright 2007 Elsevier. (1) Adapted with permission
from ref 83. Copyright 1999 American Institute of Physics. (m) Adapted with permission from ref 84. Copyright 2008 Wiley-VCH. Adapted with
permission from ref 87. Copyright 2000 Wiley-VCH. (q) Adapted with permission from ref 88. Copyright 2016 The Royal Society of Chemistry.

dimensional doping profiles such as radial p—n junc-
tions.”””””’" In addition, structures of lower dimensionality
such as quantum wires and quantum dots can be added on the
nanowire facets to increase the functionality.”***?>~°* Finally,
the detached nature of nanowires allows for a further extension
of the free-standing structures in three dimensions. Nucleation
of a second generation of nanowires on the facets results in the
formation of branched and/or hierarchical structures, which
can be used in applications where a large surface-to-volume
ratio is required,95 and electronic devices.”® This design
freedom provided by the nanowire morphology and growth
mechanism inspired many materials systems and applications.
The easy positioning of the structures via the catalyst on any
substrate also opened up new possibilities and the idea of
integration with other technologies.”””® Among the achieve-
ments allowed by this new design possibility: single electron
transistors, Majorana physics, biosensors, quantum dot single
photon emitters, light emitting diodes, solar cells,
etc,,... 219699108

An unexpected avenue of nanowire technology has been
crystal phase engineering.'” While in bulk materials there is
most often a unique crystal structure stable in normal
conditions (except for highly ionic crystals such as SiC,
GaN, or when using heavy doping''®™""?), nanowires have

shown stable phases otherwise unstable in the bulk. As an
example, III—-Vs are found both in zinc-blende (bulk phase)
and wurtzite structure,''® silicon and germanium have been
synthesized in hexagonal form.''®'"> The hexagonal or
wurtzite structure is the result of the modification of the
stacking sequence along the (111) direction. The stacking
modification can be engineered for the formation of
intermediate polytypes and twining superlattices,”>*>"'¢~"*
opening possibilities for the formation of controlled crystal
phase quantum dots."*"'**

While the large surface-to-volume ratio plays a role in the
stabilization of metastable phases, it is only recently that the
microscopic reason was elucidated. Even though the
importance of the contact angle of the liquid phase in the
VLS process was clear from the early ages,””''”'* recent in
situ studies went a step further. Nanowire growth was followed
in situ in a transmission electron microscope. A contact angle
close to 90° was associated with nucleation of each bilayer at
the triple-phase-line, TPL."**'* In this case, energy balance
favors the formation of a wurtzite segment as its surface energy
at the {11—20} planes is lower.""® An increase in the contact
angle is associated with the formation of a wedge or truncated
facet at the liquid—solid interface, favoring nucleation of the
new bilayer at a distance from the TPL.”°"** In this
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configuration, zinc-blende is favored over to wurtzite. When
the nucleus is not exposed to the vapor phase, the most stable
phase is regained for zinc-blende.'* Such an insight could be
demonstrated experimentally thanks to one of the most recent
breakthroughs in this area: the possibility of observing growth
in situ with the precision of a transmission electron
microscope. This technique has brought many additional
insights that would not have been possible otherwise, to name
a few: confirmation that VLS can occur below the
eutectic,">”"*! formation of an edge at the TPL,”'3? variation
of instantaneous nanowire growth rate as a function of the
crystal phase or presence of defects,'”’ and most recently the
faceted nature of the bilayer during its formation.'*®

Coming back to the growth mechanism, both the synthesis
methods and the microscopic understanding have increased in
sophistication with the years. In addition to in situ studies,
much progress has been obtained from the growth studies in
regular arrays, including the effect of internanowire distance in
the diffusion of precursors and shadowing as well as the
geometry of the nucleation sites.'**™'*° A slight variation of
the VLS method consists of the VSS method, standing for
vapor—solid—solid.”**"*” The mechanism mostly identical to
VLS, the only difference being that the metal droplet stays
solid during the whole process. This results into a bit slower
nanowire growth. The main advantage of VSS is the possibility
of obtaining sharper heterostructures, potentially down to the
monolayer accuracy. Growth precursors tend to be much less
soluble in the solid than in the liquid metal. Consequently, the
switch of precursors does not result in a significant reservoir
effect, 130157

This last point brings us to the choice of catalyst for
nanowire growth. Au is the most employed method in VLS as
it does not oxidize and supports well the decomposition and
gathering of many growth precursors. Still, the use of gold is
incompatible with CMOS technology. Gold introduced deep
traps in silicon, and it thus damages the electronic properties at
very low concentrations.>*"”

The unsuitability of Au in Si technology has led to the
question of what makes a metal a good catalyst for VLS or VSS
growth.””'** The following criteria should be taken into
account for the choice of the catalyst: (i) solubility of the
precursor in the metal, (ii) solubility of the catalyst in the
material to be grown, and (iii) surface tension of the catalyst.
First, indeed, the precursor should be to some extent soluble in
the metal so that the catalyst can gather it. The thermodynamic
phase diagram of the two will determine the temperature range
at which VLS and/or VSS can take place. The thermodynamic
phase diagram also provides information on the solubility of
the growth precursor. CALPHAD has been used to determine
the phase diagrams for new systems in which such diagram did
not exist.'*' The solubility of the metal in the grown material is
also key. A nonzero solubility value leads to incorporation of
the metal during growth. Consequently, the size of the catalyst
is progressively reduced until it disappears and the grown
material is contaminated. Incorporation of the catalyst in the
nanowire can lead to damage on the functional properties or
doping, depending on the type of levels introduced. As an
example, In or Ga have been used for the growth of Si and Ge
nanowires. The catalyst was consumed during growth, leading
to p-type structures.'*”~"** Subsequent radial growth led to the
formation of a p—n junction and a nanowire-based solar cell
device."*

Finally, it has been argued that surface tension of the liquid
metal is also a fundamental property to consider for successful
nanowire growth. It has been suggested that low values should
not allow for VLS growth due to the lack of stability."** This
criterion results from the adaptation of the Young equation
describing wetting on planar surfaces. Liquids with low surface
tension tend to form flatter droplets, which are not favorable to
VLS. One should note here Young’s equation should not be
applied for the wetting of liquids on nonplanar structures such
as nanowire tips. Stability of a droplet on a tip cannot be
modeled by this equation. In this configuration, a wide range of
wetting angles are possible by just modifying the droplet
volume,"*”"*” in principle in contradiction with the wetting on
planar surfaces (Ghisalberti et al, 2019, Nanotechnology,
https://doi.org/10.1088/1361—6528/ab139c). Experimentally,
low surface tension metals were indeed extensively used for
nanowire growth.””'**'** Surface tension also plays a role in
the Gibbs—Thomson effect as it determines the diameter
below which precursors are not able to incorporate in the
liquid metal, thereby stopping nanowire growth.'*”'*°

Alternatively, one can just use an element composing the
grown material for VLS. This method is also called self-assisted
growth. This kind of growth was already predicted in the
seminal work by Wagner and Ellis: “an excess of one of the
component materials can act as a liquid-forming impurity,”*
the impurity here taking the role of “catalyst”.’>' As an
example, Ga or In can be used to assist the growth of GaP,
GaAs, and InAs, respectively.””'>>~">* A difference here with
traditional VLS and VSS is that the catalyst needs to be
continuously refilled, otherwise the axial elongation of the
nanowire stops. Also here, the thermodynamic phase diagram
acts as a guide to determine the growth parameter space. To
illustrate this, one can look at the thermodynamic phase
diagram of GaAs.'”> The growth of GaAs and related
compounds relies on the thermodynamic equilibrium between
the stoichiometric GaAs and the vapor phases Ga and As, ;.
Thanks to this, the impinging Ga and As,,, fluxes must not
contain the exact stoichiometry of the GaAs compound. In thin
film growth, an excess As,,, is preferred as this is desorbed;
while in self-catalyzed growth, the excess Ga stays liquid at the
tip of the nanowire.">> Liquid-phase epitaxy predates the self-
catalyzed growth, and one has now recognized that mechanism
as part of a macroscopic parent. Alternatively, self-catalyzed
growth is the nanoscale version of liquid-phase epitaxy.

Among the advantages of self-assisted growth are the high
purity, the possibility of varying the catalyst size/volume. In
itself, the free variation of the catalyst volume allows a
relatively straightforward path to modify the contact angle and
the nanowire diameter. The value of the contact angle has a
direct impact on the crystal phase'*® and the regulation of the
diameter.””'>”">* The straightforward modification of the
catalyst volume also provides obvious means to switch from
axial to radial growth and vice versa. Axial elongation can be
ceased by complete consumption of the droplet. Further
epitaxy results into radial structures.'”” On the other hand,
axial growth can be resumed by simply redepositing the
catalyst at the nanowire tip.'®” Nonetheless, self-catalyzed
method comes with challenges such as the need of a well-
balanced precursor’s flux which affects the steady-state growth
but also the crystal phase control. An alternative path to avoid
gold as a catalyst is to simply avoid any metal or intermediate
phase. This is often referred as vapor—solid, VS. VS relies on
the imbalance in crystal growth velocities, depending on their
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crystallographic orientation. ”” There are two main

approaches to obtain nanowires by VS: in a self-assembled
manner and by selective-area growth, or selective-areaepitaxy
(SAG or SAE) on localized areas of a patterned substrate.
Direct self-assembly usually relies on a lattice-mismatched
substrate where growth does not proceed on a layer-by-layer
fashion. It rather starts by islands that then evolve into
nanowires."*>™'%° In some studies, it has been claimed that
growth starts with a liquid droplet.'**™"%® Typical examples of
self-assembled VS-grown nanowires are GaN on sapphire or
silicon and InAs on silicon.'"**'**~'7* Both in MBE and
MOCVD, VS growth tends to result in a higher number of
stacking faults compared to VLS.

VS can be initiated with a higher yield by the use of a mask.
As an example, where a dielectric mask is, we keep an
unfavorable nucleation site and remain free of III-V growth
under appropriate conditions. Adatoms are able to diffuse

through this mask but cannot easily nucleate a droplet or
crystallize, rather they desorb. Small openings or pinholes in
the mask act as nucleation points for growth. These can be
random due to the partial discontinuity of the oxide layer (aka
pinholes) or provoked in a deterministic manner by nano-
lithography approaches.''”*~'7” SAE can be used to achieve
freestanding structures but also structures and networks that
are solidary with the substrate. Defect-free nanoscale
membranes have been achieved by SAE both by metal—
organic chemical vapor deposition and molecular beam
epitaxy.’®'”? These membranes can be used as 1D buffer
structures for more complex and scalable networks; see image
on the bottom right in Figure 3."" They can host 1D
structures on top, which at the same time can be branched and
contacted electronically.*”'®" Among the advantages of the
SAE approach are the deterministic localization of the
structures, scalability of the process, and a larger freedom in
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What we know:

o0 Nanowires grow on a layer-by-layer fashion, starting on a single
nucleus. [128]

o Nucleation statistics of each layer follows a sub-poissonian distribu-

tl()ll ()09 '

0 The triple phase line can be the nucleation point of a new layer.

Open questions:

0 Can we go beyond the sub-poissonian distribution? Is it possible to
achieve perfect superlattices as in traditional epitaxy? To control
supersaturation at the atomic limit 7

0 Where is the nucleation point in a truncated liquid-solid interface 7
0 The microscopic picture relating the contact angle, truncation and
crystal growth direction. What is really happening at the LS inter-

[128]

0 The presence of truncated facets at the liquid-solid interface is asso-

ciated with the growth of zinc-blende phase. [127]
0 Engineering the contact angle of the catalyst supports crystal phase
and growth direction engineering.[147][190][191]

face and TPL?
0 The microscopic understanding of the liquid-solid interface at the
crossing of two nanowires and its effect on the crystal structure.

-

‘ . - . . 0 The role of the surface in ordering at the nanoscale in multidinary
o Composition limited by the solubility of precursors in the metal . . )
. . . . . alloys. Can it be engineered 7
droplet and by the chemical potentials. Limited compositions in mul- : ‘
tidinary alloys and in heterojuctions. [141][149][150][214 0 What is the limit in the formation of multidinary alloys in terms of
. . . . . composition control 7
o0 Hierarchical scalable structures: a second life for selective area epitaxy
allowing the formation of scalable networks and hybrid structures 0 Can we avoid VLS for certain alloy compositions and junctions
(e.g. semiconductor-superconductor junctions).[180][181 (use SAE/SAG) ?
o It is possible to form heterostructures formed by materials of different 0 Mechanisms of SAE and TASE, phase tuning/control of wires and
families (Si/GaAs).[20] networks.
0 The sharpest nanowire-based heterostructure is obtained by a crys- 0 The limits of SAE/SAG in terms of : scalability, integration of
tal-phase homojunction.[22 mismatched materials and the formation of hybrid structures.
o Nanowire growth seems to support the formation of otherwise metas- 0 How can we exploit the ability to form metastable phases for a
table phases and alloys (wurtzite, GeSn).[113][223][224] bandstructure engineering in the broadest sense?

o Surface and interface defects can degrade considerably the functional
properties of nanowires.[225-228][229]

o Surface and interface defect formation: How much is this given by
thermodynamics and how much can be engineered?

Figure 5. Table summarizing the advances in the nanowire vapor-phase growth field and the questions that are still to be answered.

shape engineering to suit a large pool of potential applications A further sophistication of SAE consists in defining the

while retaining lots of the nanowire features. It opens real nucleation position of the nanowire but also its growth path.
perspectives toward mass production of connected nanostruc- This is the so-called template-assisted selective area epitaxy,

tures.'** TASE."*”'® This kind of growth is particular of MOCVD, the
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difficulties from MBE originate from the directionality of the
growth precursors in contrast to gas molecules. A slight variant
of this method is also called CELO: confined epitaxial lateral
overgrow‘ch.lgg’190 Here, nanoscale galleries are fabricated in a
dielectric (usually SiO,). The end of the gallery is in contact
with a crystalline seed (usually Si), which selectively starts
nanowire growth. Following this method, defect-free GaAs
nanowires have been obtained monolithically on silicon."**'""
As for SAE, TASE is fully scalable on any wafer size. It is
performed on Si (100), allowing for a mostly certain
integration of compound semiconductors on the silicon
platform.

This brings us to the question of how much can the growth
direction in nanowires be engineered. The easy growth axis is
(111). Most polar materials even precognize a particular
polarity over a large range of growth parameters. In the vast
majority of cases the (111) B polarity is preferred for III-V
and II-1IV semiconductor nanowire family. For instance GaAs
nanowires tend to form along the (111) B direction
independently of the growth mechanism, while InP nanowires
form with B polarity for metal-assisted VLS growth and in the
(111) A for particle-free selective area growth. Still, it has been
shown that these natural growth directions can be engineered
(De La Mata 2019, Nano Lett, submitted). Initial studies
pointed out that the growth direction may depend on the
nanowire diameter, suggesting the prominent role of the
surface-to-volume ratio in stabilizing the facets.'””'"® It has
however been shown that growth direction and polarity can be
tuned by engineering the reactant concentration and catalyst
contact angle."*”"”*"”* In nonpolar group IV semiconductor
nanowires, excellent control over the growth direction between
(112) directions was achieved via a modulation of the
precursor concentration in the droplet.'”® Similarly, InP
nanowires were shown to be tunable between the (001) and
(111) direction with remarkable control by varying the group
I concentration in the droplet.'”* Growth direction engineer-
ing opens many perspectives in heterogeneous integration of
materials as well as for the formation of 3D nanowire
structures and networks.'”*™'%’

Finally, the substrate is not needed to start nanowire growth.
Using the natural tendency of nanowires to solidify at the
interface with the catalyst, it was shown that they could be
obtained in a single crystalline manner in the gas phase. This
new kind of growth is called aerotaxy.'** Aerotaxy or growth in
the gas phase was further sophisticated for the growth of
nanowires and related junctions on the gas flow and on
demand.***~*%> To provide an overview of the time line of the
field, we have summarized the main milestones in a time arrow
in Figure 3.

3. OUTLOOK: QUO VADIS NANOWIRE GROWTH?

We now switch gears to discuss the outlook and open
questions in the area. Figure 3 provides a timeline of the
milestones achieved in the last 63 years. It is clear that the level
of sophistication and progress has been accelerated, especially
in the past few years. Most of it has been driven by the higher
level of understanding achieved, enabled by techniques, such as
nanoSIMS, synchrotron,and Cs-corrected TEM, and stimu-
lated by the broad range of avenues that nanowires promise.
Extrapolating this trend, future evolution will probably be
driven by the still open questions. Here, we propose still
unanswered matters whose answers should spark new avenues.
Figures 4 and S summarize a list of accepted paradigms in the

field of vapor phase nanowire growth along with the open
questions they leave. Answering the open questions will
certainly derive into new paradigms, some of them may
contradict what is widely accepted today.

The direct observation of crystal growth in an electron
microscope with spatial resolution down to the atomic size is
breathtaking. This kind of experiment has brought consid-
erable advancement in understanding the growth process by
providing images of the process in an instantaneous
manner.'””"*® The recent technical progress in in situ
transmission electron microscopes allow monitoring growth
with atomic resolution. This kind of experiment also provides
the necessary knowledge to generalize the basic growth
mechanisms independently of the growth technique. Some of
the recent findings in the topic of polytypism are represented
in Figure 4. While previous works argumented that the growth
occurs on a layer-by-layer basis and the point of nucleation
plays a major role in defining the phase, only recently these
two assumptions could be verified.">”'** We expect that the
next breakthroughs will be achieved when ultrahigh speed
cameras will be used, capturing growth instants well below the
ms.

So far, it is well accepted that nanowires progress on a layer-
by-layer fashion. The time spacing each bilayer nucleation
follows a subpoissonian statistics, a consequence of emptyin,
the liquid reservoir each time a bilayer has been obtained.*""
The existence of subpoissonian nucleation statistics implies
that the elongation of nanowires/heterostructures cannot be
determined down to the monolayer precision.””* *°® This is
contrary to traditional thin film epitaxy, in which the thickness
of layers is precise down to the monolayer. Consequently, new
strategies should be developed in the future for the creation of
perfect superlattices and/or perfectly reproducible quantum
heterostructures.””® One possibility could be the control of the
liquid supersaturation down to the atomic liquid. This would
require not only growth at a very low rate but also achieving
liquid catalysts of exactly the same size in an array.

The role of the triple-phase line, TPL, in the nucleation of
each new bilayer is also well established. For a flat liquid—solid
interface, in situ TEM studies demonstrated that growth starts
at a point of the TPL and extends from there. The nucleation
point of a new layer for a truncated liquid—solid interface is
less clear. Partly, this is due to the fact that the new layer
appears so fast that current microscope systems cannot yet
capture the initial stages. Some works suggest that nucleation
of new bilayers occurs far from the TPL in the truncated facet.
This hypothesis has yet to be demonstrated. The formation of
each new bilayer is accompanied by the instantaneous
disappearance of the truncation. It could be the formation of
a new bilayer as well. Nucleation could thus still ensue at the
TPL. In addition, one could point out to several other
questions that are still unanswered: what is the role of liquid
ordering at the liquid—solid interface in the formation of every
new bilayer?”'”*"" What is the nature of layer-by-layer growth
of a nanowire growing in the (100) direction?

This brings us to another open issue. Several groups have
exposed that contact-angle engineering of the liquid phase in
VLS supports the control on the crystalline growth direction
and even polarity."*”"”* Even though they have established a
direct correlation between the two, the microscopic picture
explaining the mechanism is still lacking. In particular, it is not
clear how the contact angle favors certain crystalline
orientations in the initial stages and/or along the growth.
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There is still a causality issue in between contact angle and
modification of the balance of surface and interface energies:
which is causing which? Understanding these points will
permit growth of compound semiconductor nanowires along
the (001) direction on silicon. This is the final milestone
needed for a realistic integration of optoelectronic applications
on the silicon CMOS platform. It may also provide new
solutions in the era “beyond Moore”.

We would also like to point out the open questions with
respect to SAE/SAG. Most publications assume the growth
mechanism is well-known. However, we believe this is not the
case. As an example, it is not clear why polytypism exists in this
kind of growth and whether a liquid phase can be present at
the initial stages and/or during growth.212

One of the most discussed advantage of nanowires is the
potential for integrating materials with a high lattice mismatch
or even of a different family (e.g, InP/InAs or GaAs/Si/
GaAs). The integration of materials of different families such as
semiconductor/ferromagnetic or semiconductor/superconduc-
tor in so-called hybrid structures has been demonstra-
ted.*">7>!> We believe the achievements are still limited, and
they have not yet been explored to its full potential, as
illustrated by the new promises of superconducting metal/
semiconductor radial heterostructures.”'®

The above-mentioned points today still leave many open
questions even in the traditional heterostructure area. First, the
sharpness in the heterostructure formation is mostly dictated
by the thermodynamics at the liquid phase.””%”%" As a result,
changes in the nanowire composition are not possible with
monolayer precision. The only atomically sharp heterostruc-
tures possible are of the crystal phase kind.** The ruling of the
nanowire composition by the liquid phase can also impose
some limitations in the nanowire composition. Dubrovskii,
Glas, and Johansson have demonstrated the existence of
solubility gaps in ternary alloys such as InGaAs'*"'*'°0217
that may also exist in other element combinations. The
synthesis of nanowires with any desired composition at the
ternary and quaternary levels and beyond is still to be resolved.
Similarly, it is not yet clear whether multinary alloys with a
random distribution of the elements can be obtained. Several
studies point out the ordering effects at the nanoscale both in
the nanowire core and shell.””*'®7>** Mastering of the order of
multinary alloys at the atomic and nanoscale is still an open
issue to be explored and debated.”****

Finally, one should point out the ability of VLS to produce
materials in a metastable state. We have discussed the
formation of polytypes in nanowires. In addition to this, it
has been shown that nanowires support the growth of
metastable composition alloys such as GeSn beyond the Sn
solubility limit."****° The technological impact of this is very
high, as it opens up even more possibilities in the area of
bandgap engineering. We expect to see many advances in this
front in the coming years.

Last but not least, we would like to address the impact of
surface and interface defects on the functional properties of
nanowires. Among the effects of surface and interface defects
are the increase of linewith in optical emission of nanowires
and nanowire-based quantum dots”*’~**° and hysteresis in the
transfer characteristics of transistors.”>" Although the function-
ality of nanowires is not addressed here, the origin of defects is
of a pure materials processing origin. We need to understand
how surfaces and interfaces can be produced in a pristine and
reproducible manner if nanowires are ever to be integrated in

the optoelectronics or electronics industry. In this area, we may
expect the synergistic collaboration between surface scientists,
theorists, and epitaxy experts to bring important and necessary
outcomes.

As the top-down method often appears to be the practical
choice, it is important to keep in mind that a highly aesthetic
bottom-up growth plants its roots in the most fundamental
techniques used by nature. Overall, we believe vapor phase
growth of nanowires will continue delivering discoveries in the
area of crystal growth. Providing new paradigms of crystal
formation will certainly impact this century’s technology in the
most diverse aspects.
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