178 research outputs found

    Bridge of love: knowledge and sound ecologies in the Atlantic ocean

    Get PDF
    The Lisbon neighborhood of Alto da Cova da Moura is an immigrant community consisting mainly of Africans from former Portuguese colonies. Referred to by residents as, “Kova M”, it is home to the performative practices of the Kola San Jon. This performative practice from Cape Verde assembles music, dance, voice and artifacts with a distinctly religious flavor. The religious devotion to St. John Baptist is illustrated by the prevalence of religious iconography and attendance at masses and pilgrimages. For centuries, the Atlantic Ocean represented an interstitial space that linked Africa to Europe. The Kola San Jon is an expressive practice which, in contrast to the Morna, helps to build and strengthen this link. The sea as both a living entity and a metaphorical concept that challenges traditional concepts of boundaries contributes to an inclusive sound ecology that predominates the performative practices and cultural traditions of the Kola San Jon and are suggestive of a “space” where identities are constructed and dialogue takes place through emotions such as love. Drawing on extensive ethnography both in Cape Verde and among the communities in “Kova M”, I discuss the applicability of new epistemological concepts that have grown out of my dialogical encounter in the “field”

    NMR structure of the chimeric hybrid duplex r(gcaguggc)⋅r(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription

    Get PDF
    A high-quality NMR solution structure of the chimeric hybrid duplex r(gcaguggc)⋅r(gcca)d(CTGC) was determined using the program DYANA with its recently implemented new module FOUND, which performs exhaustive conformational grid searches for dinucleotides. To ensure conservative data interpretation, the use of 1H-1H lower distance limit constraints was avoided. The duplex comprises the tRNA-DNA junction formed during the initiation of HIV-1 reverse transcription. It forms an A-type double helix that exhibits distinct structural deviations from a standard A-conformation. In particular, the minor groove is remarkably narrow, and its width decreases from about 7.5Å in the RNA/RNA stem to about 4.5Å in the RNA/DNA segment. This is unexpected, since minor groove widths for A-RNA and RNA/DNA hybrid duplexes of ∌11Å and ∌8.5Å, respectively, were previously reported. The present, new structure supports that reverse transcriptase-associated RNaseH specificity is related primarily to conformational adaptability of the nucleic acid in 'induced-fit'-type interactions, rather than the minor groove width of a predominantly static nucleic acid duple

    Syndecan-1 knock-down in decidualized human endometrial stromal cells leads to significant changes in cytokine and angiogenic factor expression patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1), play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc) family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium.</p> <p>Methods</p> <p>A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1) and prolactin (PRL) confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p < 0.05, p < 0.02 and p < 0.01 and one way post-hoc ANOVA test with p < 0.05 as cut-offs for statistical significance.</p> <p>Results</p> <p>The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation.</p> <p>Conclusions</p> <p>Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an important role as a co-receptor and storage factor for many cytokines and angiogenic factors during decidualization and implantation period, supporting proper implantation and angiogenesis by regulation of chemokine and angiogenic factor secretion in favour of the implanting embryo.</p

    Robust group sequential designs for trials with survival endpoints and delayed response

    Get PDF
    Randomized clinical trials in oncology typically utilize time-to-event endpoints such as progression-free survival or overall survival as their primary efficacy endpoints, and the most commonly used statistical test to analyze these endpoints is the log-rank test. The power of the log-rank test depends on the behavior of the hazard ratio of the treatment arm to the control arm. Under the assumption of proportional hazards, the log-rank test is asymptotically fully efficient. However, this proportionality assumption does not hold true if there is a delayed treatment effect. Cancer immunology has evolved over time and several cancer vaccines are available in the market for treating existing cancers. This includes sipuleucel-T for metastatic hormone-refractory prostate cancer, nivolumab for metastatic melanoma, and pembrolizumab for advanced nonsmall-cell lung cancer. As cancer vaccines require some time to elicit an immune response, a delayed treatment effect is observed, resulting in a violation of the proportional hazards assumption. Thus, the traditional log-rank test may not be optimal for testing immuno-oncology drugs in randomized clinical trials. Moreover, the new immuno-oncology compounds have been shown to be very effective in prolonging overall survival. Therefore, it is desirable to implement a group sequential design with the possibility of early stopping for overwhelming efficacy. In this paper, we investigate the max-combo test, which utilizes the maximum of two weighted log-rank statistics, as a robust alternative to the log-rank test. The new test is implemented for two-stage designs with possible early stopping at the interim analysis time point. Two classes of weights are investigated for the max-combo test: the Fleming and Harrington (1981) (Formula presented.) weights and the Magirr and Burman (2019) modest (Formula presented.) weights.</p

    A Novel 110-kDa Receptor Protein is Involved in Endocytic Uptake of Decorin by Human Skin Fibroblasts

    Get PDF
    The small leucine-rich proteoglycan (SLRP) decorin is efficiently internalized by a variety of cultured cells. A 51-kDa protein has previously been described as a receptor mediating endocytosis of decorin and of the structurally related SLRP biglycan. Recent findings suggest that endocytosis of SLRPs may also be mediated by additional receptors. The class-A scavenger receptor, the endocytic mannose receptor, the epidermal growth factor receptor, and insulin-like growth factor-I receptor have emerged as candidates. We used a combined approach of immunoprecipitation and photoactivated cross-linking to identify endocytosis receptors for decorin in human skin fibroblasts. Decorin was purified by HPLC-DEAE-ion exchange chromatography from the secretions of human skin fibroblasts under nondenaturing conditions. Confocal immunofluorescence microscopy revealed that both biotinylated decorin and decorin conjugated to the heterobifunctional cross-linker sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1-3'-dithiopropionate (SASD) were endocytosed with equal efficiency. SASD-conjugated decorin was added to [35S]-methionine-labeled fibroblasts and cross-linked intracellularly to receptor molecules by photoactivation on endocytic uptake. Cross-linked decorin-receptor complexes were purified from the extracts of trypsin-treated fibroblasts by anion exchange chromatography and immunoprecipitation with a decorin-specific antiserum. Analysis by 2D electrophoresis and autoradiography revealed that decorin was specifically cross-linked to a protein of 110 kDa, which exhibited an isoelectric point of 5.5. In a second approach, unlabeled fibroblasts were subjected to decorin endocytosis and photoactivated cross-linking followed by Western blotting of DEAE-purified cell extracts. A shift of biotinylated decorin immunoreactivity from 165 kDa (decorin-receptor complex) to 54 kDa (SASD-conjugated biotinylated decorin) was noted on reductive cleavage of the cross-linker, representing a difference in molecular weight of approximately 110 kDa. The identification of a 110-kDa protein as a novel endocytosis receptor for decorin provides further support for the emerging concept of a redundancy of receptor molecules in the endocytosis of SLRP

    SETD3 acts as a prognostic marker in breast cancer patients and modulates the viability and invasion of breast cancer cells

    Get PDF
    In several carcinomas, the SET Domain Containing 3, Actin Histidine Methyltransferase (SETD3) is associated with oncogenesis. However, there is little knowledge about the role of SETD3 in the progression and prognosis of breast cancer. In this study, we first analyzed the prognostic value of SETD3 in breast cancer patients using the database of the public Kaplan-Meier plotter. Moreover, in vitro assays were performed to assess the role of SETD3 in the viability and capacity of invasion of human breast cancer cell lines. We observed that the high expression of SETD3 was associated with better relapse-free survival (RFS) of the whole collective of 3,951 patients, of Estrogen Receptor-positive, and of Luminal A-type breast cancer patients. However, in patients lacking expression of estrogen-, progesterone- and HER2-receptor, and those affected by a p53-mutation, SETD3 was associated with poor RFS. In vitro analysis showed that SETD3 siRNA depletion affects the viability of triple-negative cells as well as the cytoskeletal function and capacity of invasion of highly invasive MDA-MB-231 cells. Interestingly, SETD3 regulates the expression of other genes associated with cancer such as ÎČ-actin, FOXM1, FBXW7, Fascin, eNOS, and MMP-2. Our study suggests that SETD3 expression can act as a subtype-specific biomarker for breast cancer progression and prognosis

    microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements

    Full text link
    MicroRNAs (miRNAs, micro ribonucleic acids) are pivotal post-transcriptional regulators of gene expression. These endogenous small non-coding RNAs play significant roles in tumorigenesis and tumor progression. miR-142-3p expression is dysregulated in several breast cancer subtypes. We aimed at investigating the role of miR-142-3p in breast cancer cell invasiveness. Supported by transcriptomic Affymetrix array analysis and confirmatory investigations at the mRNA and protein level, we demonstrate that overexpression of miR-142-3p in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells leads to downregulation of WASL (Wiskott-Aldrich syndrome-like, protein: N-WASP), Integrin-αV, RAC1, and CFL2, molecules implicated in cytoskeletal regulation and cell motility. ROCK2, IL6ST, KLF4, PGRMC2 and ADCY9 were identified as additional targets in a subset of cell lines. Decreased Matrigel invasiveness was associated with the miR-142-3p-induced expression changes. Confocal immunofluorescence microscopy, nanoscale atomic force microscopy and digital holographic microscopy revealed a change in cell morphology as well as a reduced cell volume and size. A more cortical actin distribution and a loss of membrane protrusions were observed in cells overexpressing miR-142-3p. Luciferase activation assays confirmed direct miR-142-3p-dependent regulation of the 3’-untranslated region of ITGAV and WASL. siRNA-mediated depletion of ITGAV and WASL resulted in a significant reduction of cellular invasiveness, highlighting the contribution of these factors to the miRNA-dependent invasion phenotype. While knockdown of WASL significantly reduced the number of membrane protrusions compared to controls, knockdown of ITGAV resulted in a decreased cell volume, indicating differential contributions of these factors to the miR-142-3p-induced phenotype. Our data identify WASL, ITGAV and several additional cytoskeleton-associated molecules as novel invasion-promoting targets of miR-142-3p in breast cancer

    The heparan sulfate proteoglycan syndecan-1 regulates colon cancer stem cell function via a focal adhesion kinase—Wnt signaling axis

    Get PDF
    In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan‐1 (Sdc‐1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc‐1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor‐initiating cell phenotype. Sdc‐1 small‐interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT‐29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex‐determining region Y)‐box 2, KLF2, and TCF4/TCF7L2. Sdc‐1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial‐to‐mesenchymal transition‐related gene expression. Sdc‐1‐depleted HT‐29 xenograft growth was increased compared to controls. Decreased Sdc‐1 expression was associated with an increased activation of ÎČ1‐integrins, focal adhesion kinase (FAK), and wingless‐type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc‐1‐depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc‐1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness‐associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence.DatabasesThe GEO accession number of the Affymetrix transcriptomic screening is GSE58751

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ

    Get PDF
    INTRODUCTION: Heparan sulphate proteoglycan syndecan-1 modulates cell proliferation, adhesion, migration and angiogenesis. It is a coreceptor for the hepatocyte growth factor receptor c-met, and its coexpression with E-cadherin is synchronously regulated during epithelial-mesenchymal transition. In breast cancer, changes in the expression of syndecan-1, E-cadherin and c-met correlate with poor prognosis. In this study we evaluated whether coexpression of these functionally linked prognostic markers constitutes an expression signature in ductal carcinoma in situ (DCIS) of the breast that may promote cell proliferation and (lymph)angiogenesis. METHODS: Expression of syndecan-1, E-cadherin and c-met was detected immunohistochemically using a tissue microarray in tumour specimens from 200 DCIS patients. Results were correlated with the expression patterns of angiogenic and lymphangiogenic markers. Coexpression of the three prognostic markers was evaluated in human breast cancer cells by confocal immunofluorescence microscopy and RT-PCR. RESULTS: Coexpression and membrane colocalization of the three markers was confirmed in MCF-7 cells. E-cadherin expression decreased, and c-met expression increased progressively in more aggressive cell lines. Tissue microarray analysis revealed strong positive staining of tumour cells for syndecan-1 in 72%, E-cadherin in 67.8% and c-met in 48.6% of DCIS. E-cadherin expression was significantly associated with c-met and syndecan-1. Expression of c-met and syndecan-1 was significantly more frequent in the subgroup of patients with pure DCIS than in those with DCIS and a coexisting invasive carcinoma. Levels of c-met and syndecan-1 expression were associated with HER2 expression. Expression of c-met significantly correlated with expression of endothelin A and B receptors, vascular endothelial growth factor (VEGF)-A and fibroblast growth factor receptor-1, whereas E-cadherin expression correlated significantly with endothelin A receptor, VEGF-A and VEGF-C staining. CONCLUSION: Syndecan-1, E-cadherin and c-met constitute a marker signature associated with angiogenic and lymphangiogenic factors in DCIS. This coexpression may reflect a state of parallel activation of different signal transduction pathways, promoting tumour cell proliferation and angiogenesis. Our findings have implications for future therapeutic approaches in terms of a multiple target approach, which may be useful early in breast cancer progression
    • 

    corecore