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In colon cancer, downregulation of the transmembrane heparan sulfate

proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness,

metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways

relevant to stem cell function, we tested the hypothesis that it may regulate

a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown

in the human colon cancer cell lines Caco2 and HT-29 resulted in an

increased side population (SP), enhanced aldehyde dehydrogenase 1 activ-

ity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY

(sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1

knockdown enhanced sphere formation, cell viability, Matrigel invasive-

ness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-

1-depleted HT-29 xenograft growth was increased compared to controls.

Decreased Sdc-1 expression was associated with an increased activation of

b1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signal-

ing. Pharmacological FAK and Wnt inhibition blocked the enhanced stem

cell phenotype and invasive growth. Sequential flow cytometric SP enrich-

ment substantially enhanced the stem cell phenotype of Sdc-1-depleted

cells, which showed increased resistance to doxorubicin chemotherapy and

irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activa-

tion of integrins and FAK, which then generates signals for increased inva-

siveness and cancer stem cell properties. Our findings may provide a novel

concept to target a stemness-associated signaling axis as a therapeutic strat-

egy to reduce metastatic spread and cancer recurrence.
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Databases

The GEO accession number of the Affymetrix transcriptomic screening is GSE58751.

Introduction

Colorectal cancer is one of the most prevalent cancers

[1]. While surgery is the main treatment option,

chemo- and radiotherapy are applied in oligometa-

static situations and in case of pain due to dissemi-

nated decay of critical organs in late stages [2].

However, therapeutic targeting at the metastatic stage

is often not successful due to the development of resis-

tance mechanisms, resulting in poor patient survival

[3]. Therapeutic resistance and recurrence have been

linked to the existence of cancer stem cells (CSCs), aka

tumor-initiating cells [4,5]. Cell tracing and lineage

tracking studies support the view that malignancies

originate from this small-cell population with increased

tumor-seeding ability and high therapeutic resistance

[4]. CSCs express high levels of multidrug resistance

proteins capable of pumping chemotherapeutics out of

the cell and show a more efficient DNA repair and

detoxification system, which within may account for

increased resistance against radiation therapy [5].

Colon cancer is one of the best-studied models to

understand CSC characteristics, due to the presence of

active stem cells (SCs) at the intestinal crypts, and the

high regenerative capacity of the colonic epithelium

[6]. At the molecular level, deregulation of the AKT/

protein kinase-BK, wingless-type (Wnt), and/or bone

morphogenic protein signaling pathways aberrantly

affects intestinal stem cell self-renewal [7]. A single

stem cell positive for the Wnt target gene leucine-rich

repeat containing G protein-coupled receptor 5 (Lgr5)

can form a long-lived, self-renewing ‘short minimal-

gut’ [8], whereas cells characterized by coexpression of

CD133+ and Msi1+ have the highest metastatic ability

compared to other marker combinations [9]. High

expression of ATP-binding cassette subfamily G mem-

ber 2 and aldehyde dehydrogenase (ALDH)1 is addi-

tional established CSC markers [5,7]. Recent findings

in breast cancer have indicated a novel and important

role for the transmembrane heparan sulfate (HS) pro-

teoglycan syndecan-1 (Sdc-1) as a modulator of CSC

function [10]. The heparin-related HS carbohydrate

chains that are attached to the extracellular domain of

Sdc-1 are involved in the maintenance of pluripotency

and differentiation, enhancing signaling of FGF-2,

BMP4, and Wnt [11–13]. Moreover, during the transi-

tion of undifferentiated ESCs into neurally differenti-

ated cells a strong increase in the expression of HS

biosynthetic enzymes is observed [14], indicating a role

for HS in lineage-specific differentiation.

Sdc-1 binds to a variety of pathophysiologically rele-

vant ligands, including growth factors and mor-

phogens (FGFs, Wnt, BMPs), chemokines, receptor

tyrosine kinases, matrix metalloproteinases, integrins,

and diverse extracellular matrix substrates [15,16].

Through these interactions, Sdc-1 modulates (tumor)

angiogenesis, recruitment of inflammatory cells, (tu-

mor) cell proliferation, cell motility, chemotaxis, and

invasiveness [17–19]. Sdc-1 represents the predominant

epithelial HS proteoglycan, preserves intestinal struc-

tural integrity, and exerts a protective function during

colitis [19]. Notably, there is a gradual decrease in

Sdc-1 expression from well differentiated to poorly dif-

ferentiated colon carcinoma and an inverse correlation

with patient survival, underscoring its clinicopathologi-

cal relevance for colon cancer progression [20–22].
Although modulation of a CSC phenotype by Sdc-1

may be of particular relevance for therapeutic resis-

tance, its role in colon CSCs has not been elucidated,

yet. In this study, we combine an in vitro small-inter-

fering RNA (siRNA) knockdown approach with phe-

notypic marker analysis, transcriptomic analyses, and

in vivo xenograft studies to characterize the role of

Sdc-1 in CSC function. Our findings indicate that

reduced Sdc-1 expression cooperatively enhances acti-

vation of integrins, focal adhesion kinase (FAK), and

Wnt signaling. Activation of these pathways then gen-

erates signals for increased invasiveness and CSC

properties of colon cancer cells, with implications for

resistance to chemo- and radiotherapy.

Results

Silencing of syndecan-1 enhances the cancer

stem cell phenotype in human colon cancer cell

lines

To characterize a potential role for Sdc-1 in human

colon CSCs, we performed a siRNA knockdown in
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Caco2 and HT-29 cells, followed by analysis of estab-

lished CSC markers [23–26] (Fig. 1A–C). Sdc-1 protein

expression was substantially downregulated for at least

14 days (Fig. 1B,C), whereas qPCR analysis revealed

no compensatory upregulation of other syndecan fam-

ily members in Sdc-1-silenced Caco2 cells (Fig. 1D).

Compared to controls, Sdc-1-silenced cells showed an

increase in the side population (SP), in ALDH1 activ-

ity and CD133 expression (Fig. 1E–G), as determined

by flow cytometry. Annexin V and propidium iodide

(PI) stainings of control and Sdc-1-depleted SP and

non-SP cells suggested that the increased SP was not

due to an altered cell death rate in the Sdc-1-depleted

non-SP (Fig. 1H). Sdc-1 depletion was associated with

significantly increased mRNA expression of the stem

cell and colon carcinogenesis-related factors CD133,

EPCAM, LGR5, KLF2, SOX2, and NANOG

(Fig. 2A).

Sdc-1 levels regulate self-renewal and

tumorigenicity of colon CSCs

The formation of tumorspheres is a key characteris-

tic of both normal SCs and CSCs, for instance, when

transplanted into mice, or placed into 3D Matrigel

tissue culture conditions, they recapitulate the cellu-

lar architecture, composition, and behavior of

tumors in vivo [27,28]. Sdc-1-silenced cells showed

increased viability and higher ability to form spheres

in serum-free suspension cultures (Fig. 2B–E).
In vivo, Sdc-1-depleted HT-29 cells generated sub-

stantially earlier and larger tumors compared to con-

trols when injected subcutaneously into NOD/severe

combined immunodeficiency (SCID) mice in two

independent experiments (Fig. 3A,B). The tumors in

both groups did not reveal obvious differences in the

cellular composition based on histology (Fig. 3C,D).

Proliferating cell nuclear antigen (PCNA) and PI

staining did not indicate differences in apoptosis or

proliferation; however, immunohistochemistry

revealed a significant downregulation of Sdc-1 pro-

tein expression in Sdc-1-silenced tumors harvested

after 46 days compared to controls (Fig. 3C–F). In

breast cancer cells, Sdc-1 downregulation is associ-

ated with increased activation of FAK and altered

interactions with fibronectin (FN) [29]. Consistent

with these findings, an upregulation of the activated

form of FAK and of FN was observed in Sdc-1-defi-

cient tumors (Fig. 3D,G–H). Moreover, upregula-

tion of the pluripotency-associated transcription

factor nanog (Fig. 2A) could be confirmed in vivo

(Fig. 3D,G–I).

Sdc-1 silencing has an impact on the canonical

Wnt signaling pathway

Canonical Wnt signaling is an important gatekeeping

pathway in the regulation of CSC properties, which is

influenced by HS and HSPGs [10,30–33]. Expression

of the Wnt effector TCF7L2 [34] was significantly

increased at the mRNA (Fig. 4A) and protein level

(Fig. 4B) in Sdc-1-depleted cells. TOPFLASH assay

revealed increased TCF/LEF-1 transcriptional activity

upon Sdc-1 silencing in Caco2 and HT-29 cells

(Fig. 4C). In HT-29 cells, Wnt-1 stimulation increased

the control cell SP, whereas the SP of Sdc-1-depleted

cells showed an even further increase (Fig. 4D). In

contrast, the Wnt inhibitor IWP-2 [35] abolished the

SP increase caused by Sdc-1 knockdown in both model

cell lines (Fig. 4D).

Sdc-1 knockdown enhances invasive growth and

induces an EMT-like phenotype

As Sdc-1 knockdown substantially increased invasive-

ness of Caco2 cells in Matrigel chambers compared to

controls (Fig. 4E), we studied a potential influence of

Sdc-1-associated signaling pathways on epithelial-to-

mesenchymal transition (EMT) [36–39]. Sdc-1 deple-

tion was associated with decreased expression of E-

cadherin and upregulation of the mesenchymal mark-

ers Vimentin, FN, and ZEB2 (Fig. 4F,G). Expression

of the EMT regulator miR-200b [38] was significantly

downregulated in Sdc-1-depleted Caco2 cells (Fig. 4G).

Mechanistic inhibitor studies revealed that the FAK

inhibitor PF-562271 [40] reduced invasive growth in

both control and Sdc-1-depleted Caco2 cells, and sig-

nificantly reduced the Sdc-1-dependent Vimentin and

ZEB2 expression to control levels (Fig. 4E,H). More-

over, Wnt inhibition by IWP-2 and interference with

integrin–FN interactions with Arg-Gly-Asp (RGD)

peptides reduced the increased invasiveness of Sdc-1-

depleted Caco2 cells to control levels (Fig. 4E). While

the Wnt inhibitor significantly reduced Vimentin and

ZEB2 expression in Sdc-1-depleted cells, RGD peptide

treatment resulted in reduced ZEB2 expression in both

control and Sdc-1-silenced cells (Fig. 4H).

Sdc-1 depletion results in increased activation of

integrin signaling

To understand the molecular pathways by which Sdc-

1 depletion mediates an invasive CSC phenotype, we

performed a transcriptomic Affymetrix microarray

analysis. Twenty-two genes were significantly
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upregulated and 48 genes downregulated in Sdc-1-de-

pleted Caco2 cells at least 1.5-fold (Fig. 5A,

Table S3). Based on Gene Ontology annotations

(Fig. 5B, Table S4), genes involved in cell adhesion,

cell motility, and integrin-mediated signaling were dif-

ferentially regulated with enhancement of the stem

cell phenotype (Fig. 5B,C), in accordance with a role

of integrin–matrix interactions in CSC function [39].

By qPCR, we could independently confirm upregu-

lation of ITGA2, FN, and the RhoA modulator

ARHGAP28 in Sdc-1-depleted cells (Fig. 5C). Upreg-

ulation of FN and nanog was also observed in Sdc-1-

depleted HT-29 xenografts (Fig. 3D). The retinoic

acid-inducible orphan receptor GPRC5A/RAI3 is

upregulated in colon cancer [41] and was dysregulated

upon Sdc-1 knockdown according to our screening.

GPRC5A siRNA knockdown significantly reduced

the impact of Sdc-1 knockdown on cell viability

(Fig. 5D). Importantly, flow cytometric analysis

revealed higher activated b1-integrin levels upon Sdc-

1 depletion (Fig. 5E). Phosphorylation of FAK, a

kinase acting downstream of ß1-integrin, was

increased in Sdc-1-depleted Caco2 (Fig. 5F) and HT-

29 (Fig. 5G) cells, as well as in HT-29 xenografts

(Fig. 3D). Heparinase treatment also increased FAK

activation, suggesting a potential role of cell surface

HS in this process (Fig. 5H). Adhesion of Sdc-1-de-

pleted cells to FN was significantly increased com-

pared to controls (Fig. 5I). Pretreatment of the cells

with RGD peptide containing the integrin binding

site of FN abolished this effect, demonstrating the

importance of increased b1-integrin activation for

Sdc-1-modulated cell adhesion.

Increased FAK phosphorylation in Sdc-1-depleted

cells is mechanistically related to the augmented

CSC phenotype

b1-integrin and FAK signaling have been linked to

EMT- and stemness-related functions in colon cancer

and additional tumor entities [42–44]. We hypothesized

that increased FAK phosphorylation may be mecha-

nistically linked to the augmented stem cell phenotype

in Sdc-1-depleted cells. The FAK inhibitor PF-562271

[40] lowered the increased expression of TCF7L2/Tcf-4

at the mRNA and protein levels in Sdc-1-depleted

Caco2 cells compared to controls (Fig. 6A,B), abol-

ished the increased SP (Fig. 6C) and ALDH1 activity

(Fig. 6D), and lowered the increased expression levels

of LGR5, EPCAM, CD133, and NANOG seen in

Sdc-1-depleted Caco2 cells to control levels (Fig. 6E).

Finally, FAK inhibition significantly reduced the

increased sphere formation capacity of Sdc-1-depleted

Caco2 cells (Fig. 6F,G).

Sdc-1 siRNA knockdown modulates the CSC

phenotype and response to chemotherapy and

irradiation

To investigate a potential link of the enhanced stem

cell phenotype to radioresistance [45], we irradiated

Sdc-1-depleted and control cells with a therapeutically

Fig. 1. Sdc-1 siRNA knockdown enhances the stem cell phenotype in colon cancer cells. (A) qPCR confirmation of Sdc-1 knockdown. Caco2

cells were transfected with Sdc-1 siRNA1, Sdc-1 siRNA2, or negative control siRNA, followed by RNA preparation, and reverse transcription

polymerase chain reaction (RT-PCR) 48 h after transfection. Sdc-1 expression is significantly downregulated by both siRNAs (n = 3, error

bars = SD, *P < 0.05, Mann–Whitney U-test). (B,C) Flow cytometric evaluation of Sdc-1 expression following transient Sdc-1 siRNA

knockdown in a time course of 0–14 days (siRNA1). siRNA-treated Caco2 and HT-29 cells were analyzed by flow cytometry at the indicated

timepoints. Sdc-1 expression is substantially downregulated for at least 14 days. Panel C) shows quantitative evaluation (mean � SD) of

two independent experiments; panel B) shows a representative analysis performed 4 days after siRNA transfection. (D) qPCR expression

analysis of the four members of the syndecan family in Caco2 cells subjected to control or Sdc-1 siRNA treatment (siRNA1, n = 3, error

bars = SD, *P < 0.05, Student’s t-test). Expression analysis was performed 48 h after transfection. Among the four syndecans, syndecan-4

is most highly expressed, followed by Sdc-1 expression. Syndecan-2 and syndecan-3 show only negligible expression levels in Caco2 cells

(about 6% of the Sdc-1 expression level). Sdc-1 siRNA knockdown results in a significant 70% downregulation of Sdc-1 mRNA expression.

Sdc-3 expression is downregulated from 6% to 5% of Sdc-1 expression levels after Sdc-1 knockdown, whereas no compensatory

upregulation is observed for any member of the syndecan family. (E–G) Quantitative analysis revealed a 49.6% and 56% increase of SP (E),

42.6% and 77.5% increase of ALDH1 activity (F), and a 3.8% and 92% increase of CD133 expression (G) in Caco2 and HT-29, respectively,

upon Sdc-1 knockdown compared to the controls (siRNA1). Data are expressed as mean percentage �SEM relative to controls (set to

100%) (n = 5 [Caco2), n = 3 (HT-29), *P < 0.05, ***P < 0.001, Mann–Whitney U-test]. (H) Sdc-1-depleted Caco2 cells display similar

apoptosis rates in the SP and nonside population. Caco2 cells were subjected to Sdc-1 siRNA knockdown (siRNA1) followed by flow

cytometric analysis 72 h after transfection. SP analysis was combined with the apoptosis marker Annexin V and PI staining. Sdc-1

knockdown did not induce apoptosis and did not increase cell death, suggesting that the enhanced SP in siSdc-1 Caco2 cells was not a

consequence of cells dying of apoptosis rather than a shift in the cellular phenotype. Representative picture of one of two independent

experiments. FL1 = Annexin V; FL3 = PI; FL4 = Hoechst blue; FL5 = Hoechst red.
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relevant dose of 2 Gy. In Caco2 cells, irradiation

increased the control cell SP, whereas Sdc-1 knock-

down increased the SP even further (Fig. 7A). qPCR

revealed an impact of irradiation on LGR5 expression

in control cells and a substantial increase in Sdc-1-de-

pleted cells. EPCAM expression was significantly

upregulated in Sdc-1-depleted cells under irradiation,

whereas NANOG and KLF2 expression was not sub-

stantially altered by irradiation (Fig. 7B). Colony for-

mation assays of Sdc-1-depleted cells revealed an

increased survival compared to controls. While the rel-

ative survival advantage of Sdc-1-depleted cells was

preserved under irradiation conditions, survival was

reduced to a similar extent in control and Sdc-1

siRNA knockdown Caco2 cells (Fig. 7C). In contrast,

Sdc-1-depleted HT-29 cells showed increased resistance

to irradiation compared to controls (Fig. 7C). As

stemness has been linked to increased resistance to

chemotherapy [46], we tested its impact on the viability

of Sdc-1-depleted HT-29 cells. While Sdc-1 siRNA

treatment did not alter sensitivity to cisplatin (results

not shown), we observed an increased resistance to

doxorubicin (Fig. 7D). However, while the mean via-

bility was higher in Sdc-1-depleted cells over a range

of 100 nM–25 µM, the data were only statistically sig-

nificant for two of the tested concentrations (100 nM,

1 µM), due to a high degree of variability.

SP enrichment enhances the impact of Sdc-1

depletion on the CSC phenotype

Sphere formation in serum-free culture conditions, in

addition to allowing quantitative measurements of the

number of CSCs present between different assay con-

ditions, is also a model for maintaining CSCs ex situ.

MammoCultTM is the most published commercially

Fig. 2. Sdc-1 siRNA knockdown enhances

the expression of stemness-related genes

and enhances sphere formation. (A) qPCR

analysis of pluripotency-associated genes in

Sdc-1-silenced Caco2 cells. Data are

expressed as mean percentage � SEM

relative to controls (set to 100%) (n = 5

(siRNA1); n = 3 (siRNA2), *P < 0.05,

***P < 0.001, Mann–Whitney U-test). (B)

Cells were transfected with a control siRNA

or Sdc-1 siRNA1, and then cultured in

sphere forming culture conditions followed

by sphere enrichment. After 1 week, more

and larger spheres were formed by Sdc-1

siRNA-transfected Caco2 and HT-29 cells

compared to controls (central panel 49;

insert panels 109). Spheres of a size larger

than 60 cells were used for counting to

calculate the percentage of spheres formed

per number of plated cells. Representative

pictures of one of six independent

experiments. Quantification is shown in D).

(C) Representative pictures of sphere

diameters of one of six independent

experiments, as quantitatively analyzed in

D). (D) Quantitative analysis reveals that

Sdc-1 siRNA treatment results in a

significant increase of sphere formation

efficiency (***P < 0.001, n = 6, Student’s

t-test). (E) Quantitative analysis of cell

viability, as determined by MTT. Data are

expressed as mean percentage � SEM

relative to the controls (set to 100%)

(n = 13, *P < 0.05, ***P < 0.001, Student’s

t-test).
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available medium for the culture of tumorspheres from

multiple tissues, including colon [47]. To demonstrate

that downregulation of Sdc-1 promotes CSC

properties also in CSC-compatible adherent culture

conditions, control and Sdc-1 siRNA-treated Caco2

cells were SP-enriched and grown in adherent culture
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conditions with MammoCultTM serum-free medium. A

significant increase in the SP levels and CD133 expres-

sion was detected in Sdc-1-depleted cells, whereas the

increase in ALDH activity was not statistically signifi-

cant (P = 0.13) (Fig. 8A). We observed an increase in

the ability of the Sdc-1-depleted sorted cells to form

tumorispheres when grown in suspension culture

(Fig. 8B,C) indicating increased self-renewal. Cells

from both the adherent colony and sphere assays

(Fig. 8B) showed morphological differences compared

to those in which a non-SP-enriched pool of Caco2

cells were used (Fig. 2B). Primarily, in adherent tissue

culture conditions, colonies from SP-enriched pool of

cells appeared more homogenous, having a more

round shape and bright and sharper defined colony

edges, suggesting a denser cell configuration [28,42,48].

In 3D suspension culture conditions, spheres appeared

more uniformly dense (opaque) and uniform in size

and morphology. When cultured in MammoCult

media under adherent conditions, Sdc-1-depleted SP-

sorted cells showed increased pFAK (Fig. 8D) and

TCF4 (Fig. 8E) expression compared to SP control

cells. Compared to controls, colony formation in irra-

diated SP-sorted cells was increased upon Sdc-1

siRNA knockdown, indicating that Sdc-1 depletion

renders SP-enriched cells more radioresistant (Fig. 8F).

Discussion

In this study, we demonstrate a novel function of the

heparan sulfate proteoglycan (HSPG) Sdc-1 as a regu-

lator of a colon CSC phenotype. While some aspects

such as changes in cell viability could be functionally

linked to lesser known factors such as GPRC5A

Fig. 3. Sdc-1 silencing promotes tumor growth in vivo. (A) Increased growth of Sdc-1 siRNA (#1)-transfected vs control siRNA-transfected

HT-29 cells in a xenograft mouse model. Three mice per group were injected with 1.0 9 105 cells, and tumor growth was monitored by

caliper measurements over a period of 55 days. Sdc-1 siRNA knockdown resulted in a significant increase in tumor volume compared to

controls (n = 3, **P < 0.01, ***P < 0.001, error bars = SD, Mann–Whitney U-test) Insert: representative tumors; scale bar = 1 cm. (B)

Independent xenograft cohort experiment. Three mice per group were injected with 1.0 9 105 cells, and tumor growth was monitored by

caliper measurements over a period of 46 days. Sdc-1 siRNA (#1) knockdown resulted in a significant increase in tumor volume compared

to controls (n = 3, *P < 0.05, error bars = SEM, Mann–Whitney U-test). (C,D) (Immuno)histology of xenograft tumor sections. Xenograft

tumor tissue from three independent tumor samples was harvested 46 days after injection (2nd mouse group), and formalin-fixed paraffin-

embedded tissue sections were processed for periodic acid–Schiff (PAS) staining, or immunostaining for Sdc-1, PCNA, pFAK, FN, or nanog,

respectively. Original magnification: 2009 (PAS), 3209 (other panels) scale bar = 100 µm. Representative pictures of samples quantitatively

analyzed in (E–I). (E–I) NIH IMAGEJ (NIH, Bethesda MD, USA) based quantitative analysis of immunohistochemistry [4] reveals a significant

downregulation of Sdc-1 expression in xenograft tumors, (E), no difference in cell proliferation rates (PCNA) (F), and a significant increase in

pFAK (G), FN (H), and nanog (I) expression. Data represent the mean � SD of 10 visual fields inspected at 1009 magnification. *P < 0.05,

Mann–Whitney U-test.

Fig. 4. Sdc-1 siRNA depletion modulates EMT and the activity of the Wnt pathway. (A) qPCR shows 2.5-fold increased TCF7L2 expression

in Sdc-1-depleted cells compared to controls. ***P < 0.001, *P > 0.05, n ≥ 3, error bars = SEM, Mann–Whitney U-test. (B) Representative

western blot of 4 independent experiments showing increased expression of Tcf7l2/Tcf4 in Caco2 upon Sdc-1 knockdown compared to

controls. (C) b-catenin-/Tcf-dependent transcriptional activity is increased by 80% in Sdc-1 (#1)-silenced Caco2 cells as determined by

TOPFLASH assay. *P < 0.05, n ≥ 4, error bars = SEM, Mann–Whitney U-test. (D) Stimulation with Wnt1 ligand for 1 h induces a ~ 40%

and ~ 20% increase in the SP pool in Sdc-1 (#1)-depleted Caco2 and HT-29 cells, respectively, compared to controls. The Wnt inhibitor IWP-

2 abolishes the Sdc-1-dependent increase in the SP. One-way ANOVA: P-value 0.0038. Group comparisons (Student’s t-test): a = P < 0.05

compared to DMSO control, b = P < 0.01 compared to DMSO/- Sdc-1 siRNA, c = P < 0.01 compared to Wnt1/-Sdc-1 siRNA, n ≥ 3, error

bars = SEM. (E) Sdc-1 knockdown increases Matrigel invasion in a FAK-, Wnt-, and integrin-dependent manner. Sdc-1-depleted and control

Caco2 cells were subjected to a Matrigel invasion chamber assay in the presence or absence of 10 µg�mL�1 FAK inhibitor (iFAK) PF-

573228, 100 µg�mL�1 RGD peptide, or 10 µM IWP-2, respectively. While FAK inhibition reduced invasiveness in the control and Sdc-1

knockdown groups, Wnt and integrin inhibition reduced increased invasiveness of Sdc-1-depleted cells. Error bars = SEM, N = 4 ANOVA:

P = 0.00858. Group comparisons (Student’s t-test): a = P < 0.05 vs control; b = P < 0.05 vs inhibitor; c = P = 0.05 vs inhibitor.

Insert = representative images of stained Matrigel matrix filters. Scale bar = 100 µm. t = 72 h. (F) Western blot reveals decreased E-

cadherin expression upon Sdc-1 knockdown compared to controls. Representative western blots of three independent experiments. (G)

qPCR analysis in Sdc-1-silenced cells indicates a significant change in expression of EMT-regulatory genes compared to control. N = 9, error

bars = SEM, *P < 0.05, ***P < 0.001 (Student’s t-test). (H) Sdc-1-dependent upregulation of Vimentin and ZEB2 depends on integrin/FAK

and Wnt signaling. Cells were treated as described in (E) and processed for qPCR analysis. ANOVA: P = 0.00118. Group comparisons

(Student’s t-test): a = P < 0.05 vs untreated control; b = P < 0.05 vs inhibitor.
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(Fig. 5D) [41], two major signaling pathways appear

to be closely linked to the Sdc-1-dependent enhance-

ment of the CSC phenotype, namely Wnt signaling

and enhanced integrin/FAK activation. Moreover,

pharmacological inhibition of these pathways reduced

the increased invasiveness of Sdc-1-depleted cells, par-

tially by reverting the expression of EMT-related gene

products (Fig. 4H). Canonical Wnt signaling is an

important gate keeping pathway in the regulation of

CSC function in colon cancer [31,49], which induces a

reprogramming event that promotes invasion and

metastasis [31,36,49]. Cells with the highest Wnt activ-

ity were found to define colon CSCs [45], whereas sin-

gle Lgr5-positive SCs were capable of building crypt–
villus structures in vitro even in the absence of a mes-

enchymal niche [1]. The Wnt/b–catenin pathway regu-

lates growth and maintenance of colonospheres [50],

and inhibition of the Wnt signaling pathway via b-
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catenin silencing decreases the chemotherapy-resistant

colon cancer SP [51]. Data from model organisms indi-

cate an important role for HS in this pathway, and

HSPG of the syndecan and glypican families acts as

Wnt coreceptors [13,52,53]. However, their individual

roles are context-dependent: Data from Sdc-1-deficient

10 The FEBS Journal (2020) ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Syndecan-1 regulates colon cancer stem cells S. Kumar Katakam et al.



mice suggest that this proteoglycan is required to

maintain a Wnt-responsive mammary progenitor cell

population [32,53], whereas Sdc-1-deficient mice

formed larger tumors compared to controls in a model

of colitis-associated colon carcinogenesis, conform

with our findings [54]. Syndecan-4 inhibits Wnt/beta-

catenin signaling through regulation of LRP6 and R-

spondin 3 in mammalian cell lines and Xenopus

embryos [33]. Moreover, shedding of Sdc-1 in cancer

cells can switch syndecan-dependent signaling

responses to members of the glypican family [55].

Finally, specific alterations in HS sulfation patterns

induce an upregulation of TCF4/TCF7L2, with a

resulting change in proliferation and invasiveness of

cancer cells [30]. While all of these results underscore

the importance of Sdc-1 in Wnt signaling in an onco-

logical context, our data indicate that downregulation

of colon cancer cell-autonomous Sdc-1 enhances Wnt

signaling. This finding may be at least partially due to

upregulation of the Wnt coreceptor LGR5, resulting in

enhanced Tcf4 activation. Moreover, the increased SP

in Sdc-1-depleted cells would apparently be associated

with a relative increase in Wnt signaling in the overall

cell population.

Apart from Wnt signaling, we detected enhanced

integrin activity in Sdc-1-depleted colon cancer cells,

which was due to increased gene expression (ITGA2)

and activation (b1-integrin), respectively. Itga2

enhances the metastatic activity of colon cancer cells

[56], and PHLDA1, a candidate human intestinal

epithelial stem cell marker, is regulated by ITGA2

levels [57]. In association with the b1-subunit, a2-inte-
grin increases tumorigenicity and loss of the differenti-

ated epithelial phenotype in colon cancer [58].

Particularly, b1-integrins are key regulators of prolifer-

ation and homeostasis in the intestine, which influence

signaling pathways relevant to stem cell function [59],

and promote metastatic behavior in colon cancer cells

[60]. Interestingly, Tcf4, which was dysregulated in our

experimental system upon Sdc-1 siRNA knockdown,

Fig. 5. siRNA knockdown of Sdc-1 results in activation and upregulation of integrin-associated pathways. (A–C) Affymetrix microarray

analysis of control and Sdc-1 siRNA1-transfected Caco2 cells. (A) Volcano plot of genes with at least a twofold change in expression levels

with FDR (Benjamin–Hochberg) P < 0.05 (red triangles). (B) Number of genes found differentially expressed defined by relevant phenotypic

function (Gene Ontology grouping). (C) qPCR confirmation of differential ITGA2, FN1, and ARHGAP28 gene expression. *P < 0.05,

**P < 0.01, n = 9, error bar = SEM, Student’s t-test. (D) MTT assay. GPRC5A siRNA knockdown abolishes the increased cell viability

caused by Sdc-1 siRNA1 knockdown. ANOVA: P-value = 0.00001. Group comparisons (Student’s t-test): a = P < 0.05 vs untreated control;

b = P < 0.05 vs Sdc-1 siRNA and control; n = 3, error bar = SEM. (E) Flow cytometric analysis reveals a 40% and 50% increase of active

ß1-integrin expression in Sdc-1-depleted Caco2 and HT-29 cells, respectively, compared to controls. siRNA1, n = 3, error bar = SEM,

*P < 0.05. Student’s t-test. (F,G) Western blot analysis shows increased FAK phosphorylation upon Sdc-1 siRNA1 knockdown in Caco2 (F)

and HT-29 (G) cell lines. (F,G) Representative blot of 3 independent experiments. (H) Heparinase I and III treatment induces increased FAK

phosphorylation in Caco2 (representative western blot of three independent experiments) I) Cell adhesion to FN is significantly increased

upon Sdc-1 silencing (siRNA1). Interference with integrin– FN interactions by RGD peptide results strongly inhibits adhesion. ANOVA:

P = 0.000001. Group comparisons (Student’s t-test): a = P < 0.05 vs untreated control; b = P < 0.05 vs RGD treatment. n = 18, error

bars = SEM.

Fig. 6. Impact of Sdc-1-dependent FAK activation on the stem cell phenotype. (A, B) Pharmacological inhibition of FAK reduces Sdc-1-

dependent upregulation of TCF4/TCF7L2 in Caco2. (A) qPCR analysis of TCF7L2 expression in control and Sdc-1 siRNA1-depleted cells

treated with or without 10 µg�mL�1 of the FAK inhibitor PF-573228 (1 h). ANOVA P = 0.01225. Group comparison (Student’s t-test):

*P < 0.05 vs control, n = 9, error bar = SEM. (B) Western blot analysis of Tcf7l2 expression after 2 h of treatment with 10 µg�mL�1 PF-

573228. Representative blot of 3 independent experiments. (C–H) Treatment with 10 µg�mL�1 of PF-573228 for 1 h decreases the CSC

phenotype. FAK inhibition decreases the Sdc-1 siRNA1 knockdown-dependent increase in (C) the SP (N = 3, ANOVA P = 0.00017, group

comparison (Student’s t-test): a = P < 0.05 vs control; b = P < 0.05 vs inhibitor; error bars = SEM), and (D) ALDH activity (Caco2, n = 3,

ANOVA P = 0.0001, group comparisons (Student’s t-test): a = P < 0.001 vs control; b = P < 0.05 vs control; c = P < 0.001 vs siSdc-1. error

bars = SEM). (E) qPCR analysis reveals that increased mRNA expression of LGR5, CD133, NANOG, and SOX2 in Sdc-1-deficient Caco2

cells is abolished by FAK inhibition. ANOVA P = 0.001, group comparisons (Student’s t-test): a = P < 0.05 vs control; b = P > 0.05 vs siSdc-

1 (siRNA1). n = 3, error bars = SEM. (F,G) FAK inhibition abolishes the Sdc-1-dependent increase in Caco2 sphere forming capacity.

Representative micrograph of 3 independent experiments (F, see Fig. 2C for diameters) and quantitative analysis (G) of sphere formation �
Sdc-1 siRNA knockdown � FAK inhibitor treatment. Sdc-1 siRNA1 knockdown results in a significant ~ 5 fold increase compared to

controls, while FAK inhibition suppresses sphere formation in both controls and Sdc-1-depleted cells. ANOVA P = 0.00001, group

comparisons (Student’s t-test): a = P < 0.001 vs control; b = P < 0.001 vs inhibition; c = P < 0.05 inhibited control vs siSdc-1, n = 3, error

bars = SEM.
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mislocalizes in the intestinal epithelia of b1 integrin-

deleted mice [59], suggesting a crosstalk of the two

major signaling pathways affected by Sdc-1 depletion.

The demonstration that E-cadherin, which was dysreg-

ulated upon Sdc-1 depletion, acts as an integrin ligand

further supports this view [61]. Finally, enhanced

expression of the integrin– and HS–ligand FN in Sdc-

1-depleted Caco2 cells may have enhanced signaling

via these pathways, enhancing both cell motility and

stem cell properties.

An important downstream signal transducer of inte-

grin signaling is FAK, previously shown to co-

immunoprecipitate with Sdc-1 [18]. Consistent with

increased integrin activation, FAK phosphorylation

was enhanced upon Sdc-1 depletion in Caco2 cells.

While our finding of increased FAK activation upon

degradation of cell surface HS further supports a role

for cell surface HSPG in this pathway, it has to be

considered that not only Sdc-1, but also other cell sur-

face HSPGs, such as Sdc-4 or glypicans, could have

contributed to this effect [13]. For example, Sdc-2 was

shown to regulate FAK activity in HT-29 cells depend-

ing on phosphorylation of the variable region of its

cytoplasmic domain [62].
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Our finding of a novel link between Sdc-1 and FAK

activation is of clinicopathological relevance, as FAK is

overexpressed in colon cancer [63]. FAK inhibition

blocked several of the Sdc-1-related phenotypic changes,

suggesting that increased FAK activation may be a piv-

otal point in the Sdc-1-dependent signaling network.

Notably, these changes are probably not only linked to

enhanced invasive behavior and resistance to radiation

(see Ref. [29] for discussion), but also to the CSC phe-

notype: FAK was shown to be linked to the Wnt path-

way and to regulate intestinal regeneration and

tumorigenesis, altering the response to radiotherapy

[64]. Finally, downregulation of FAK activity decreases

transcription of the Wnt (co)receptors Frizzled and

LRP5 and increases transcription of the Wnt inhibitor,

Dickkopf-1, demonstrating that FAK acts upstream of

the Wnt pathway in colon cancer [65].

Conclusions

In summary, we have demonstrated a novel role for

the HSPG Sdc-1 as a regulator of a colon CSC pheno-

type. Mechanistically, Sdc-1 depletion is associated

with increased activation of integrins, HS-dependent

downstream activation of FAK signaling, and activa-

tion of the Wnt/Tcf4 signaling pathway. The activa-

tion of these pathways promotes an EMT-like process,

which promotes tumor cell viability and tumor growth

in vivo, invasive growth, and increased resistance to

chemo- and radiation therapy. We provide novel

Fig. 7. Sdc-1 depletion modulates changes in the colon CSC pool in response to irradiation and doxorubicin chemotherapy. (A–C) Control

and Sdc-1 siRNA1-transfected cells were subjected to irradiation with 2 Gy. (A) After 4 h of radiation, the SP was analyzed by flow

cytometry. In Caco2 cells, irradiation induced an increase of the SP. ANOVA P = 0.00186. Group comparisons (Student’s t-test): a = P <0.05

vs untreated control; b = P < 0.05 nonirradiated vs irradiated. (n = 3). (B) Radiation treatment induces significant increases in the expression

of the stem cell markers LGR5 and EPCAM in Sdc-1-depleted Caco2 cells, as assessed by RT-PCR ANOVA: P < 0.04. Group comparisons

(Student’s t-test): a = P < 0.05 vs untreated control; b = P < 0.05 irradiated vs nonirradiated; c = P < 0.05 irradiated control vs siSdc-1

(siRNA1), (n = 3). (C) Colony survival assay shows an increase in the basal survival rate upon Sdc-1 siRNA1 knockdown in Caco2 and HT-29.

Depletion of Sdc-1 increases radiation resistance in HT-29 cells. ANOVA: P = 0.00001. Group comparisons (Student’s t-test): a = P < 0.001

vs untreated control; b = P < 0.001 irradiated vs nonirradiated; c = P < 0.001 irradiated control vs irradiated siSdc-1, (n = 6). (D) Sdc-1

siRNA1-depleted HT-29 cells show increased resistance to doxorubicin treatment in MTT cell viability assays (n = 5, *P < 0.05, Mann–

Whitney U-test). (A–D) Error bars = SEM.
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evidence that Sdc-1 levels regulate self-renewal of

colon CSCs. In particular, we show that modulation

of levels of Sdc-1 alone is sufficient to promote loss of

colon CSC self-renewal, suggesting that Sdc-1 is a key

player maintaining the CSC pool. We conclude that

interference with Sdc-1-dependent signaling processes

emerges as a promising approach in the therapeutic

targeting of colon cancer.

Fig. 8. SP enrichment and culturing in MammoCult media enhance the stem cell phenotype of Sdc-1-silenced Caco2 cells. The SP of

control siRNA or Sdc-1 siRNA1-treated cells was isolated by flow cytometric sorting, cultured in MammoCult (adherent) or sphere media,

and re-analyzed for stemness-associated parameters. (A) Sdc-1-depleted cells cultured in MammoCult show a significant ~ 3 fold increase in

the SP. ALDH activity was nonsignificantly increased (P = 0.13), whereas CD133 expression was significantly increased by 38% upon Sdc-1

depletion. *P < 0.05, n = 3, error bars = SEM (Mann–Whitney U-test). Left panel = representative picture of SP analysis; right

panel = quantitative analysis. (B, C) Sdc-1-depleted SP -enriched cells show increased cell numbers/plated cell in MammoCult media, and

increased sphere numbers when cultured in sphere media. (B) Morphology of cells cultured in MammoCult or sphere media, respectively.

Representative picture from three independent experiments. (C) Quantitative analysis. **P < 0.01, n = 3, error bars = SEM, Student’s t-

test. (D-E) Increased expression of pFAK and Tcf4 in SP-enriched Sdc-1-depleted cells cultured in MammoCult media. Representative

western blots of two independent experiments. (F) Sdc-1-depleted SP-enriched cells cultured in MammoCult media show a substantial

increase in the colony survival rate, with an increased survival rate after irradiation compared to controls (compare with Fig. 7D). Data are

expressed as mean percentage � SEM relative to controls (set to 100%). ANOVA: P = 0.00014. Group comparisons (Student’s t-test):

a = P <0.01 vs untreated control; b = P <0.05 irradiated control vs irradiated siSdc-1 (n = 3).
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Materials and methods

Antibodies and reagents

Antibodies are listed in Table S1. GRGDSP peptide was

from Calbiochem (EMD Biosciences Inc. La Jolla, CA,

USA). Wnt1 was from PeproTech (Hamburg, Germany).

Unless stated otherwise, FAK inhibitor (PF-573228), IWP-

2, heparinase I/III, and all additional chemicals were from

Sigma (Deisenhofen, Germany), and all media, FBS, and

tissue culture supplies were from Gibco BRL (Karlsruhe,

Germany).

Adherent cell culture

The human colon cancer cell lines Caco2 and HT-29, authen-

tified by STR analysis, were provided by the German Collec-

tion of Microorganisms and Cell Cultures, Braunschweig,

Germany. Cells were routinely tested for the absence of

mycoplasma contaminations using the Venor GeM Classic

Kit (Minerva Biolabs, Berlin, Germany). Cells were main-

tained with RPMI-1640 (Caco2) or Dulbecco’s modified

Eagle’s medium (DMEM) (HT-29) supplemented with 10%

(v/v) FBS and 1% (v/v) penicillin/streptomycin in a humidi-

fied atmosphere of 5% and 7% CO2 at 37 °C. Cells were cul-

tured to 80% confluence. In some experiments, cell surface

HS was degraded by adding 0.5 U�mL�1 of heparinase I and

III to the culture medium for 3 h as described [66].

siRNA knockdown

siRNA knockdown was performed using siRNAs silencer

select #s12634 (‘siRNA 1’) and silencer #12527 (‘siRNA 2’)

(Ambion, Cambridgeshire, UK) targeting the coding region

(border of exons 2 and 3, location bp 452, and exon 5,

location bp 1222, accession no. NM_002997.4, respectively)

of Sdc-1, siRNA #17259 (Ambion) targeting the coding

region of GPCR5A, and a negative control siRNA (nega-

tive control #1; Ambion). Cells were serum starved for 5 h

before transfection at 50–70% confluence using 40 nM

siRNA and DharmaFECT reagent (Dharmacon, Lafayette,

CO, USA) according to the manufacturer’s instructions.

Fresh medium was added 16 h after transfection, and

experiments were conducted 48 h after transfection. Target

downregulation was confirmed by qPCR (Fig. 1A).

Enrichment of Caco2 and HT-29 cells with sphere

formation capacity

Enrichment of spheres

Colonospheres are a model for culturing and maintaining

colon SCs or CSCs ex situ. Spheres are generated from sin-

gle CSCs as previously described culture and characteriza-

tion of mammary CSCs in mammospheres [67,68]. Caco2

sphere cultures were generated by plating single cells in low

attachment plates (Corning, Kaiserslautern, Germany) at

1000 cells per mL into RPMI-1640 supplemented with B-27

(Life Technologies, Wesel, Germany), 25 ng�mL�1 basic

fibroblast growth factor (bFGF; Sigma-Aldrich),

20 ng�mL�1 mouse recombinant EGF (Sigma-Aldrich), and

4 ng�mL�1 heparin (Sigma-Aldrich) (‘Sphere media’). HT-

29 sphere cultures were generated analogously using

DMEM supplemented with 5% FBS B-27, 25 ng�mL�1

bFGF, 20 ng�mL�1 mouse recombinant EGF, and

4 ng�mL�1 heparin [68].

Sdc-1 silencing in sphere cultures

A total of 9500 cells were plated in 24-well plates under

adherent conditions 48 h before the treatment. Cells were

transfected with 50 nM Sdc-1 siRNA1 (#12634; Ambion) or

negative control siRNA (Ambion), using INTERFERin�
(Polyplus-transfection, Illkirch-Graffenstaden, France) accord-

ing to the manufacturer’s instructions. Twenty-four hours

later, cells were washed, trypsinized (0.25% trypsin/EDTA;

Gibco, Life Technologies), counted, and seeded in suspension

culture. Fresh sphere medium was added every 3 days. Caco2

and HT-29 spheres were counted after 7 and 11 days.

FAK inhibitor treatment

siRNA-transfected Caco2 cells were seeded at 20 000 cells

per cm2. After 24 h, the medium was changed and cells

were treated with either the inhibitor PF-562271

(10 µg�mL�1) or vehicle as control (0.05% DMSO). After

48 h, cells were washed, trypsinized, counted, and plated as

single cells in sphere medium containing the same inhibitor

or DMSO, respectively. Media were replaced after 3 days,

and spheres were counted after 7 and 11 days from suspen-

sion plating.

SP enrichment using flow cytometry

5 9 106 cells were transfected with control siRNA and

Sdc-1 siRNA 2 (#12527; Ambion). After 72 h, cells were

subjected to sort SP cells from control and Sdc siRNA cells

a CyFlow Space flow cytometer (Sysmex Partec, M€unster,

Germany). These cells were maintained for 5 days in adher-

ent culture conditions with MammoCult serum-free media.

Further, these cultured cells were used for SP, CD133,

ALDH levels (by FACS), colony formation ability, western

blot, and sphere formation ability as described in the

respective methods sections.

Cell viability and chemosensitivity assay

Cell viability [18] and chemosensitivity in the presence of

doxorubicin hydrochloride (100 nM–50 µM) [36] were
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evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-

zolium bromide (MTT) assay as previously described

[17,36].

Cell adhesion assay

A cell adhesion assay based on the photometric detection

of borate-buffered (pH 8.5) methylene blue staining of cells

bound to different substrates was performed as described

[29], using 96-well plates coated with 50 µg�mL�1 FN,

100 µg�mL�1 GRGDSP peptide, or 10 µg�mL�1 BSA as a

negative control.

Invasion assay

BioCoat Matrigel Invasion Chamber (BD Biosciences, Hei-

delberg, Germany) assay was performed exactly as

described [18].

Quantitative real-time PCR (qPCR)

Total cellular RNA was isolated using RNA-OLS (OMNI

Life Science, Hamburg, Germany) and reverse-transcribed

(Advantage First-strand cDNA Synthesis Kit; Fermentas,

St. Leon-Rot, Germany). qPCR and melting curve analysis

were performed using either Qiagen QuantiTect SYBR

Green PCR Kit (Qiagen, Hilden, Germany) in a LightCy-

cler (Roche, Mannheim, Germany), or TaqMan probes on

an ABI PRISM 7300 Sequence Detection System [18]. The

2�DDCt method was used to determine relative gene tran-

script levels after normalization to 18S rRNA. Primers are

listed in Table S2.

Immunoblot

Immunoblotting was performed as described [2] using 30–
60 µg of protein/lane on 5–7.5% gels. Antibodies are listed

in Table S1.

TOPFLASH/FOPFLASH reporter assay

Twenty-four hours after siRNA transfection, cells were cul-

tured in serum-containing media for 6 h and cotransfected

with 1 µg of plasmid/well (6-well) TOPFLASH/FOP-

FLASH luciferase reporters [Addgene, Cambridge, MA,

USA, plasmid #12456 and 12457, [69] using FuGENE 6

Reagent (Promega, Mannheim, Germany)] according to the

manufacturer’s instructions. Per well, 0.5 ng Renilla control

luciferase plasmid was cotransfected to normalize for trans-

fection efficiency. Forty-six hours after transfection, cells

were lysed, and luciferase activity was assayed in a lumi-

nometer using the Dual-Luciferase Reporter Assay Kit

(GeneCopoeia, Rockville, MD, USA). TOPFLASH and

FOPFLASH values were normalized to Renilla activity,

and fold induction was calculated as TOPFLASH/FOP-

FLASH signal ratio.

Affymetrix microarray expression analysis

Total RNA was isolated from three biological replicates of

scrambled siRNA control and Sdc-1 siRNA-transfected

cells using the basic RNA-OLS Kit (OLS, Bremen, Ger-

many). Preparation of biotin-labeled cRNA using the 1-cy-

cle labeling protocol, hybridization, and scanning of the

arrays was performed as described [18]. 3.6 lg of purified

RNA and poly-A controls were used to generate cDNA,

which was used to synthesize biotin-labeled cRNA. Frag-

mented cRNA was hybridized to Human Genome U133

Plus 2.0 Arrays for 16 h at 60 °C in a GeneChip

Hybridization Oven 640 at 60 r.p.m. The arrays were

washed and stained in a GeneChip Fluidics 450 station

(Affymetrix, Singapore, Singapore), followed by scanning

(Affymetrix GeneChip Scanner 3000). The raw data image

was processed with GENECHIP OPERATING Software v1.2

(Affymetrix) and analyzed using GeneSpring GX 11.0 with

Robust Multiarray Average normalization. A list of differ-

entially expressed genes was generated using the filtering

criteria of P < 0.05 after Benjamini–Hochberg false discov-

ery rate control and fold change of at least 2. The DAVID

2008 database was used to verify the annotations of the fil-

tered genes (n = 396) and classify them into ontology

groups. The GEO accession number of this screening is

GSE58751.

Flow cytometry

All flow cytometric analyses were performed on a CyFlow

Space flow cytometer (Sysmex Partec). SP analysis was per-

formed 72 h after siRNA transfection using Hoechst 33342

dye exclusion [3]. Apoptosis was evaluated using an

Annexin V test kit (Becton Dickinson, San Jos�e, CA, USA)

as described [70]. When combined, SP staining was done

first, followed by CD133 labeling. In stimulation experi-

ments, Wnt1 was used 50 ng�mL�1 and IWP-2 at 10 µM

for 1 h. SP and non-SP cells were sorted by flow cytometry,

and SP cells were enriched in adherent conditions using

MammoCult media (STEMCELL Technologies, Cologne,

Germany) and in suspension conditions using sphere

media. ALDH-1 activity was assessed 72 h after siRNA

transfection using the ALDEFLUORTM kit (STEMCELL

Technologies) [10,29]. Fluorescence emission was measured

at 520 nm in FL1. Gates were set by comparing the fluo-

rescence of the DEAB control with that of the original

sample. CD133 was detected using mouse anti-CD133-PE

mAb (clone AC133) and IgG1-PE isotype control (Miltenyi

Biotec, Bergisch Gladbach, Germany). Ten microlitre of

each antibody was given to 1 9 106 cells suspended in

90 µL PBS with 0.1% BSA and incubated for 20 min in
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the dark. After final addition of 5 mL PBS/BSA and cen-

trifugation at 400 g, cells were resuspended in 1 mL PBS/

BSA. Fluorescence emission was detected at 570 nm in

FL2 and quantified by setting a region gate. Mouse anti-

human-integrin b1 mAb HUTS-4 (Millipore, Darmstadt,

Germany) was used to analyze the active conformation of

b1-integrins. About 1 9 106 cells were incubated with

2.5 µg mAb for 1 h at room temperature. Cells were

washed with PBS/BSA and incubated with Alexa 488-con-

jugated goat anti-mouse secondary antibody (Invitrogen,

Karlsruhe, Germany, 1 : 1000) for 30 min at 25 °C in the

dark. After a final washing step, fluorescence emission was

detected at 520 nm in FL1 and quantified by setting a

region gate.

Radiation exposure

Cells were irradiated with 2Gy at room temperature using

6 MV photons of a linear accelerator (Varian Medical Sys-

tems, Palo Alto, CA, USA) at a dose rate of 4.8Gy per

minute.

Colony forming assay

1 9 103 irradiated or untreated knockdown cells were pla-

ted into 3.5-cm petri dishes with a 2.5 mm grid (Nunc,

Langenselbold, Germany) and incubated for 8–12 days in a

CO2 incubator at 37 °C. Colonies with more than 50 cells

were counted using a microscope (Olympus, Hamburg,

Germany). The survival fraction was calculated as plating

efficiency treated/plating efficiency control [29].

NOD/SCID mouse xenograft model

In vivo xenograft experiments were approved by the local

animal committee ‘OMC’ [Ospedale San Raffaele Mouse

Clinic, San Raffaele, Segrate-Milano, Italy (IACUC #590)]

and performed at the DIBIT, Milan, Italy. All experiments

were performed in accordance with relevant guidelines and

regulations, including implementation of a harm–benefit
analysis and the doctrine of replacement, reduction, and

refinement. HT-29 cells were plated under adherent condi-

tions 72 h before transfection with INTERFERin� reagent

(Polyplus-transfection) and 50 nM Sdc-1 siRNA #12634

(Ambion), or 50 nM negative control #1 (Ambion) accord-

ing to the manufacturer’s instructions. After 48 h, cells

were trypsinized, counted, and prepared for injection

(0.25% trypsin/EDTA; Gibco, Life Technologies). For each

condition, 1.0 9 105 transfected cells were injected subcuta-

neous in the neck of NSG (NOD scid gamma; Charles

River Laboratories Italia, SRL, Sant’Angelo Lodigiano

LO, Italy) mice. The mice were anesthetized with isoflurane

prior to tumor cell injection. Two independent experiments

with three animals/group were performed. Animals were

sacrificed 55 days (exp.1) or 46 days (exp.2) after injection.

Tumor size was estimated daily using calipers by measuring

the difference in the suspect tumor width, which includes

the width of the animal skin, subtracted from width of the

folded skin of a control region of the animal. Tumor vol-

ume was calculated from the linear dimensions using the

formula: Volume = (width)2 9 length/2 [71]. Immunohisto-

chemical analysis of formalin-fixed, paraffin-embedded

xenograft tumor sections was performed exactly as

described previously [3], employing the DAKO

EnVision + Dual Link System-horseradish peroxidase

(DAB+) Kit (DAKO, Glostrup, Denmark). Primary anti-

bodies are listed in Table S1. Quantitative analysis of

immunohistochemical staining results was performed on 10

visual fields at 1009 magnification using NIH IMAGEJ soft-

ware as previously described [72].

Statistics

Unless stated otherwise, all experiments were repeated at

least three times in triplicates. Data are presented as mean

values � SEM. In case two or more treatment groups were

analyzed, data were analyzed by one-way ANOVA. Indi-

vidual group comparisons were tested for significance

employing Student’s unpaired t-test in case of normally dis-

tributed data and Mann–Whitney U-test in case of non-

normally distributed data. The level of significance was set

at P < 0.05.
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