5,205 research outputs found

    Evidence of ongoing radial migration in NGC 6754: Azimuthal variations of the gas properties

    Get PDF
    Understanding the nature of spiral structure in disk galaxies is one of the main, and still unsolved questions in galactic astronomy. However, theoretical works are proposing new testable predictions whose detection is becoming feasible with recent development in instrumentation. In particular, streaming motions along spiral arms are expected to induce azimuthal variations in the chemical composition of a galaxy at a given galactic radius. In this letter we analyse the gas content in NGC 6754 with VLT/MUSE data to characterise its 2D chemical composition and Hα\alpha line-of-sight velocity distribution. We find that the trailing (leading) edge of the NGC 6754 spiral arms show signatures of tangentially-slower, radially-outward (tangentially-faster, radially-inward) streaming motions of metal-rich (poor) gas over a large range of radii. These results show direct evidence of gas radial migration for the first time. We compare our results with the gas behaviour in a NN-body disk simulation showing spiral morphological features rotating with a similar speed as the gas at every radius, in good agreement with the observed trend. This indicates that the spiral arm features in NGC 6754 may be transient and rotate similarly as the gas does at a large range of radii.Comment: 8 pages, 4 figures, accepted for publication in ApJL 2016 September 2

    Optimization of pulsed thermoelectric materials using simulated annealing and non-linear finite elements

    Full text link
    [EN] The objective of this work is to determine the optimal shape, gains and duration of an electric pulse applied to a Peltier cell, together with the length of the thermoelectric to maximize cooling while min- imizing electric consumption. For this purpose, a fully coupled, multiphysics, dynamic finite-element model, which solves for the thermal, electric and mechanical fields is used. Because of the demanding computing requirements of the optimization process, a special mesh is designed and a convergence anal- ysis is carried out before using the multiphysics model. The highly non-linear optimization is done by simulated annealing, a heuristic algorithm in the Markov chain Monte-Carlo family. A preliminary para- metric investigation is presented, analyzing the impact of some of the parameters. The results of this pre- liminary analysis help to understand the effect of the different shapes in the evolution of the cold face temperature. Some of these results are expected and have already been discussed elsewhere, but others can only be explained after further analysis and a full system modeling. Pulse optimization is multiobjec- tive and multiparametric, i.e., it can consider several targets such as maximizing the cooling temperature, the cooling duration or others. The trade-offs between the different targets are studied. In all cases, stres- ses inside the thermoelement are examined at all points, and the pulses must meet the restriction that an equivalent stress is not above the allowable value.This research was partially supported by the grants, Haut-de-France Region (CR Picardie, 120-2015-RDISTRUCT-000010), EU funding (FEDER, RDISTRUCT-000010) for Chaire-de-Mecanique, and Spanish Ministry of Economy and Competitiveness grant CGL2014-59841-P. These supports are gratefully acknowledgedMoreno-Navarro, P.; Pérez-Aparicio, JL.; Gómez-Hernández, JJ. (2017). Optimization of pulsed thermoelectric materials using simulated annealing and non-linear finite elements. Applied Thermal Engineering. 120:603-613. https://doi.org/10.1016/j.applthermaleng.2017.04.036S60361312

    Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

    Full text link
    [EN] Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.This work was supported by the Generalitat Valenciana research programmes PROMETEO/2020/016: Applications de Topologic Isolators in Spintronics and Thermoelectricity (TOP-TERM) and BEST/2021/079. The support is gratefully acknowledged.Moreno-Navarro, P.; Pérez-Aparicio, JL.; Gómez-Hernández, JJ. (2022). Analytical and multicoupled methods for optimal steady-state thermoelectric solutions. Coupled Systems Mechanics, an international journal. 11(2):151-166. https://doi.org/10.12989/csm.2022.11.2.15115116611

    Synthesis of large-pore zeolites from chiral structure-directing agents with two l-prolinol units

    Get PDF
    In this work, we perform an in-depth experimental and computational study about the structure-directing effect of two new chiral organic quaternary ammonium dications bearing two N-methyl-prolinol units linked by a xylene spacer in para or meta relative orientation, displaying four enantiopure stereogenic centers in (S) configuration. Synthesis results show that the para-xylene derivative is an efficient structure-directing agent, promoting the crystallization of ZSM-12 (in pure-silica composition), beta zeolite (as pure-silica, or in the presence of Al or Ge), and a mixture of polymorphs C, A and B of zeolite beta (in the presence of Ge). In contrast, the meta-xylene derivative showed a much poorer structure-directing activity, yielding only amorphous materials unless Ge is present in the gel, where beta and polymorph C (together with A and B) zeolites crystallized. Molecular simulations showed that the para-xylene dication displays a cylindrical shape suitable for confining in zeolite pores, while the meta-xylene derivative has an angular shape that shifts from the typical dimensions required for 12MR zeolite channels. Despite enantio-purity of the para-xylene dication with (S, S, S, S) configuration, no enrichment in polymorph A of the zeolite beta samples obtained was observed by Transmission Electron Microscopy. With the aid of molecular simulations, the failure in transferring chirality to the zeolite is explained by the loose fit of this SDA in the large-pores of zeolite beta, and a lack of close geometrical fit with the chiral element of polymorph A, as evidenced by the very similar interaction of the cation with the two enantiomorphic space groups of polymorph A. Nevertheless, the molecular-level knowledge gained in this work can provide insights for the future design of more efficient SDAs towards the synthesis of chiral zeolites

    Analyzing the potential impact of BREXIT on the European research collaboration network

    Get PDF
    In this work, we study the impact that the withdrawal of institutions from the United Kingdom caused by BREXIT has on the European research collaboration networks. To this aim, we consider BREXIT as a targeted attack to those graphs composed by the European institutions that have collaborated in research projects belonging to the three main H2020 programs (Excellent Science, Industrial Leadership, and Societal Challenges). The consequences of this attack are analyzed at the global, mesoscopic, and local scales and compared with the changes suffered by the same collaboration networks when a similar quantity of nodes is randomly removed from the network. Our results suggest that changes depend on the specific program, with Excellent Science being the most affected by BREXIT perturbation. However, the structure of the integrated collaboration network is not significantly affected by BREXIT compared to the variations observed after the random removal of institutions

    The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of behavioral addictions: Two case reports and review of the literature

    Get PDF
    none9noBackground Several behaviors, besides consumption of psychoactive substances, produce short-term reward that may lead to persistent aberrant behavior despite adverse consequences. Growing evidence suggests that these behaviors warrant consideration as nonsubstance or “behavioral” addictions, such as pathological gambling, internet gaming disorder and internet addiction. Case presentation Here, we report two cases of behavioral addictions (BA), compulsive sexual behavior disorder for online porn use and internet gaming disorder. A 57-years-old male referred a loss of control over his online pornography use, started 15 years before, while a 21-years-old male university student reported an excessive online gaming activity undermining his academic productivity and social life. Both patients underwent a high-frequency repetitive transcranial magnetic stimulation (rTMS) protocol over the left dorsolateral prefrontal cortex (l-DLPFC) in a multidisciplinary therapeutic setting. A decrease of addictive symptoms and an improvement of executive control were observed in both cases. Discussion Starting from these clinical observations, we provide a systematic review of the literature suggesting that BAs share similar neurobiological mechanisms to those underlying substance use disorders (SUD). Moreover, we discuss whether neurocircuit-based interventions, such as rTMS, might represent a potential effective treatment for BAs.openCuppone, D; Gómez Pérez, L J; Cardullo, S; Cellini, N; Sarlo, M; Soldatesca, S; Chindamo, S; Madeo, G; Gallimberti, LCuppone, D; Gómez Pérez, L J; Cardullo, S; Cellini, N; Sarlo, M; Soldatesca, S; Chindamo, S; Madeo, G; Gallimberti,
    corecore