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ABSTRACT

In this work, we study the impact that the withdrawal of institutions from the United Kingdom caused by BREXIT has on the European
research collaboration networks. To this aim, we consider BREXIT as a targeted attack to those graphs composed by the European institutions
that have collaborated in research projects belonging to the three main H2020 programs (Excellent Science, Industrial Leadership, and Societal
Challenges). The consequences of this attack are analyzed at the global, mesoscopic, and local scales and compared with the changes suffered
by the same collaboration networks when a similar quantity of nodes is randomly removed from the network. Our results suggest that
changes depend on the specific program, with Excellent Science being the most affected by BREXIT perturbation. However, the structure of
the integrated collaboration network is not significantly affected by BREXIT compared to the variations observed after the random removal
of institutions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139019

The withdrawal of the United Kingdom (UK) from the European
Union (EU), commonly known as BREXIT, will cause profound
socioeconomical changes both in the UK and the rest of the EU.
One of the foundational goals of the EU is to foster the col-
laboration of European actors at all levels. Perhaps, research is
one of the fields that benefited the most from the creation of
the EU, allowing alliances between research groups of different
countries and disciplines. Here, we analyze the consequences of
BREXIT in the network of collaboration among the EU institu-
tions (research centers, industries, and universities) funded by
the three different programs of the H2020 framework: Excellent
Science, Industrial Leadership, and Societal Challenges. In par-
ticular, we study how different network metrics vary when UK
institutions are removed and compare with null models in which
a similar quantity of nodes is randomly removed from the net-
work. In a nutshell, our results suggest that BREXIT effects vary
across each of the three programs in which the H2020 framework

is articulated. In particular, for the program Excellent Science,
BREXIT produced a significant drop of both global and local
network efficiency rooted on the central role played by UK insti-
tutions in this program. Nevertheless, for the aggregated network
encoding all the collaborations across the three programs, we only
find significant changes at the local level, in which the collabora-
tion network after BREXIT appears more cohesive than expected.
Finally, the mesoscopic properties of the new networks reveal
that, while communities vary, the reorganization after BREXIT
does not differ much from that expected randomly.

I. INTRODUCTION

One of the most useful frameworks to understand and
characterize the functioning of many complex systems such as the
Internet, power grids, or biological circuits is network theory.1–3
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Networks provide a useful and versatile representation of the back-
bone of interactions among the elements of complex systems in
which statistical physics4,5 and dynamical system6,7 tools can be
accommodated to study their structural and functional properties.

One of the most paradigmatic contributions of classical statis-
tical physics tools to modern network science is the use of perco-
lation theory8 to analyze the robustness of complex systems under
perturbations. This application was spurred by the finding9 that
scale-free networks are extraordinarily robust under the random
deletion of nodes, i.e., failures, but very fragile to attacks, i.e., the
targeted removal of highly connected vertices. A number of works
addressed the analytical study of this important finding using per-
colation theory,10–12 allowing to connect the percolation threshold
with the moments of the degree distribution of the underlying
topology. In parallel, network robustness was also tackled from the
dynamical systems’ perspective by studying sandpile models mim-
icking the propagation of failures in the form of cascades across the
network.13–16

Apart from its theoretical interest, the fragility of real
world networks17–20 motivated an intensive search of efficient
protection21–24 and control25 methods for networked architectures.
This interest has been boosted in the last few years motivated by
the study of multilayer networks.26 This framework has revealed that
real networked systems, when coupled (as, for instance, the Internet
and the power grid), are much more fragile than when considered
separately.27,28 This fragility is manifested by the change in the order
of the percolation transition that pass from a smooth one for uncou-
pled systems (thus with early-warnings about the breakdown of the
system), to an explosive one29 when coupled.30–34

In this work, we analyze the robustness of the European
research collaboration network under BREXIT. Many papers and
studies have been published about the impact that BREXIT would
produce at different levels and sectors, such as, for example, on
the EU Budget,35 on agri-food policies,36 or on the pharmaceuti-
cal industry.37 The fostering of the collaboration of European actors
being one of the foundational goals of the EU, research is one of
the fields that benefited the most since the creation of the EU. The
successive Framework Programs (FPs) have played a key role in this
fostering and contributed decisively to the strengthening of scien-
tific and technological collaboration in Europe, from the first FP
established in 1984 with a budget of nearly 4 × 109e to the present
Horizon 2020 program with a budget of 80 × 109e.38–40

Different publications have used network theory to analyze
the collaboration ecosystem formed by the entities participating
in these FPs. Protogerou et al.41 study the nature and structure
of some of these policy-driven collaborative research networks,
in particular those formed under the fourth, fifth, and sixth FPs
in the area of Information Society Technologies. They find that
these networks display characteristics of complex networks such as
small-world property and scale-free distributions, and that they are
structured around a core of organizations, mainly universities and
research centers, which have assumed a very influential role over
time. The EU Commission itself has also commissioned studies such
as Refs. 42–44, where the authors implement measures similar to
the ones used here. In Ref. 45, the authors found these scale-free
networks to play an important role in generating and, especially,
in diffusing knowledge by attracting key industry actors and by

strengthening overall network connectivity through public support.
In Ref. 46, the authors study how incentives for collaboration shape
collaborative behavior and researcher productivity in the context of
EU-funded research networks, observing that collaborations formed
to capitalize on funding opportunities, while not effective in enhanc-
ing research productivity in the short run, may be an important
promoter of effective collaborations in the longer run.

Here, we adopt the network perspective to studying BREXIT
by considering this event as a targeted attack to the graph. To this
end, we compare the effects of this attack with those of a random
failure in which a similar number of entities are removed. The arti-
cle is organized as follows. First, in Sec. II, we describe the dataset
and the assumptions considered to construct the network of Euro-
pean projects (Sec. II A), and the different metrics considered to
quantify the impact of BREXIT (Sec. II B). In Sec. III, we show the
main results by analyzing the impact of BREXIT at global, meso-
scopic, and local scales. Finally, in Sec. IV, we round off the article
by discussing the results and giving some concluding remarks.

II. NETWORK CONSTRUCTION AND ANALYSIS

In this section, we introduce the way of defining the networks
of European projects and the tools used to characterize the effect
of the removal of nodes corresponding to UK institutions from the
former graphs.

A. Network formulation

The data used to construct the collaboration networks of
European projects have been obtained from the public EU H2020
database47 spanning a time period from 2014 to February 2018. After
processed by Kampal Data Solutions48 (a spin-off from the Univer-
sity of Zaragoza), we focus on the projects belonging to the three
main programs of the H2020 framework: Excellent Science (P1),
Industrial Leadership (P2), and Societal Challenges (P3). For each
single project, we have obtained the following information: Project
ID, the corresponding program, the institution acting as coordinator
(name, Id, country, and the allocated funds), and the rest of insti-
tutions participating in the project (names, IDs, countries, and the
corresponding allocated funds). In Table I, we summarize the main
information for each of the three programs while in Fig. 1, we show
the collaboration networks belonging to the three programs high-
lighting the nodes corresponding to UK institutions. We would also
like to remark the different types of activity developed by the 19 200
institutions studied in this work: 12 265 (64%) institutions corre-
spond to private companies, 2010 (10%) to research organizations,
1486 (8%) correspond to public entities, 1481 (8%) to higher edu-
cation institutions, and 1962 (10%) institutions correspond to other
activity types.

With these data at hand, network construction is based on the
collaboration among institutions through each of the projects. Thus,
each node in the network corresponds to an EU institution and two
nodes are connected by a link if the corresponding institutions have
participated in the same project and, importantly, one of the two
nodes being the coordinator of the shared project. This way, each
project is represented as a star graph centered at the coordinator.
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TABLE I. For each program, we show the number of institutions that participate in

at least one project, how many of these institutions are from UK, the total number of

projects in each program, the number of projects with at least one participant from

UK, the total amount of funds allocated in the programs, and the total amount of funds

allocated to UK institutions.

P1 Excellent
Science

P2 Industrial
Leadership

P3 Societal
Challenges

Total number of
institutions

3764 9498 12 227

UK institutions 396 941 1 184
Proportion 11% 10% 10%
Total number of

projects
8249 4366 3 870

Projects with UK
participation

2696 1083 1 449

Proportion 33% 25% 37%
Total funds (Mill e) 9702 6257 9 723
Funds UK institutions

(Mill e)
1934 704 1 319

Proportion 20% 11% 14%

Therefore, the whole collaboration network is the sum of these start
graphs and, as a consequence, it is a weighted graph.

We used two different approaches for the calculation of the
weight wij of a link connecting institutions i and j. In the first one,
the weight of a link is simply the number of projects shared by both
nodes in which one of them has been the coordinator. The sec-
ond approach consists in assigning the weight as the sum, over all
projects involving both nodes (again when one of them has acted
as coordinator), of the allocated funds to the node which has the
role of participant. The results obtained for both approaches are
qualitatively similar. We also obtained results for the network con-
struction taking into account only the binary structure of the edges,
i.e., the unweighted network. Results are also qualitatively simi-
lar, with the only difference that for the unweighted network, the
changes after removing UK nodes differ from the set of networks
after random removal of nodes in a less significant way than for
weighted networks.

In order to avoid redundancy in the results and conclusions,
the target of this work focused on the networks obtained with the
first approach for weight calculation, taking into account only the
number of projects without funds.

B. Network descriptors

Using the former network construction, we obtain four undi-
rected and weighted networks, one for each program and a fourth
one consisting in the aggregation of the other three. In Table II, we
report the main properties for each network. To estimate the impor-
tance of each country to each of the four collaboration networks
and identify the relative position that UK institutions have on these
graphs we have computed, taking into account only the Giant Clus-
ter Component (GCC), three usual centrality indicators: Between-
ness (BC), Closeness (CC), and Eigenvector (EC) centralities,1–3 for
each node in the GCC:

FIG. 1. Collaboration networks of European projects belonging to the three main
H2020 programs. For the sake of clarity, the networks only include the 103 institu-
tions with the largest number of collaborations. The nodes corresponding to UK
institutions are highlighted in orange (see legend).

• Betweenness Centrality quantifies the importance of a node as
product of its presence in the shortest paths connecting other
pairs of vertices in the network. In particular, the BC of a node
v is computed as

BC(v) =
∑

s6=t6=v

∑

t6=s6=v

σstv

σst

, (1)
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TABLE II. Main properties of the networks analyzed. For each network, we show the

number of nodes (institutions), N, the size of the giant connected component, GC, the

average degree, 〈k〉, the average strength per node, 〈s〉, and the diameter, D.

Network P1 P2 P3 Aggregated

N 3764 9498 12 227 19 204
GC 3560 6670 10 382 16 512
〈k〉 4.70 2.58 3.41 4.16
〈s〉 5.24 2.84 3.70 4.79
D 12 12 10 12

where σst is the number of shortest paths from node s to node t
and σstv is the number of these paths that pass through v.

• Closeness Centrality points out the centrality of a node with
respect to the distance from this node to the rest of nodes. The
calculation of CC of node v is as follows:

CC(v) = 1
∑

s6=v dvs

N−1

= N − 1
∑

s6=v dvs

, (2)

where dvs is the distance of the shortest path from node v to node
s and N is the total number of nodes. In other words, Closeness
Centrality of node v is the inverse of the average distance from v
to all other nodes.

• Eigenvector Centrality measures the importance of a node as
proportional to the importance of its neighbors. This definition
yields a recursive relation for the calculation of EC that leads to
the calculation of the leading eigenvector, Ex, of the Adjacency
matrix A,

AEx = λEx, (3)

where λ is the largest eigenvalue. Once solved, the ith component
of the resulting eigenvector Ex (xi) accounts for the EC value of
node i.

These three properties are usual estimators42,55,56 of the importance
of institutions and countries in the spread of collaborations across
research networks and the formation of new projects.

After calculating the three centrality values of all nodes belong-
ing to the GCC of each network, we have estimated the importance
of a country α according to a centrality measure X, Xα , as the sum of
the centralities Xi of each node i belonging to this country,

Xα =
∑

i∈α

Xi. (4)

Since we are interested in the relative position of UK institu-
tions with respect to other countries α, we have renormalized each
value Xα by the centrality of the most central country according to
the specific centrality measure X: X̃α = Xα/ maxβ(Xβ). In Table III,
we report the ranking of each country according to the different
values X̃α for each of the four collaboration networks.

In addition, we have computed the average values of the cen-
tralities for the nodes belonging to UK and for the whole set of
nodes. In Table IV, we can observe the ratio of these two averages
for each centrality and for each of the three program networks and
the aggregated one. This calculation gives us a more detailed infor-
mation about the average importance of the individual UK nodes
with respect to the other individual nodes. Taking the average value,
we are eliminating the dependence of the centralities on the number
of nodes of UK. That way, Table III is related to the global effect of
BREXIT in the networks (taking into account the number of institu-
tions in UK) and Table IV is related somehow to the relative effect

TABLE III. We report the ranking of the most central countries in the four collaboration networks according to three centrality measures: Betweenness (BC), Closeness (CC),

and Eigenvector (EC) centralities. We also show the values X̃α for each country (see text for details). The position of UK institutions is highlighted in boldface.

P1 Excellent Science P2 Industrial Leadership

Rank BC CC EC BC CC EC

1 France (1.0) Germany (1.0) Germany (1.0) Germany (1.0) Germany (1.0) Germany (1.0)
2 UK (0.67) UK (0.84) UK (0.99) Spain (0.57) Spain (0.78) Spain (0.65)
3 Italy (0.56) France (0.75) France (0.71) France (0.54) Italy (0.70) France (0.63)
4 Germany (0.41) Italy (0.71) Italy (0.64) Italy (0.41) France (0.68) Italy (0.58)
5 Switzerland (0.34) Spain (0.70) Spain (0.51) Belgium (0.26) UK (0.64) UK (0.49)
6 Netherlands (0.32) Netherlands (0.40) Netherlands (0.48) UK (0.23) Netherlands (0.37) Belgium (0.32)
7 Spain (0.24) Belgium (0.25) Switzerland (0.32) Greece (0.23) Belgium (0.33) Netherlands (0.30)

P3 Societal Challenges Aggregated Network

Rank BC CC EC BC CC EC

1 Germany (1.0) Germany (1.0) France (1.0) Germany (1.0) Germany (1.0) Germany (1.0)
2 France (0.74) Spain (0.83) Germany (0.93) France (0.95) Spain (0.77) UK (0.80)
3 Spain (0.69) Italy (0.83) Italy (0.76) Spain (0.53) Italy (0.76) Italy (0.72)
4 UK (0.64) UK (0.81) Spain (0.73) Italy (0.48) UK (0.74) France (0.71)
5 Italy (0.63) France (0.71) UK (0.65) UK (0.41) France (0.71) Spain (0.69)
6 Netherlands (0.62) Netherlands (0.55) Belgium (0.58) Netherlands (0.35) Netherlands (0.48) Netherlands (0.47)
7 Greece (0.41) Belgium (0.46) Netherlands (0.55) Greece (0.25) Belgium (0.38) Belgium (0.34)

Chaos 30, 063145 (2020); doi: 10.1063/1.5139019 30, 063145-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE IV. Table showing the ratios with errors, between the average centrality values (BC, CC, and EC) of the UK nodes and the average values of whole nodes, for the three

program networks and the aggregated network. In the case of Closeness Centrality (CC), we have subtracted 1.0 to the average ratio to show a more fine comparison, due to

the similarity of UK average value and whole network average value. Errors have been calculated by propagating the error of centralities average.

Network P1 P2 P3 Aggregated

〈BC〉UK
〈BC〉Network

1.4 ± 0.4 0.6 ± 0.1 1.1 ± 0.2 0.9 ± 0.2

〈CC〉UK
〈CC〉Network

− 1 2 × 10−2 ± 1 × 10−2 8 × 10−3 ± 7 × 10−3 3 × 10−3 ± 5 × 10−3 9 × 10−3 ± 5 × 10−3

〈EC〉UK
〈EC〉Network

1.4 ± 0.2 0.9 ± 0.1 0.9 ± 0.1 1.2 ± 0.1

of removing UK nodes compared to the effect of removing other
network nodes.

From Tables III and IV, we observe that UK institutions clearly
play a central role for the P1 program, they are on the top of the
ranking, and their average centrality is greater than total average.
However, for P2, P3, and the aggregated network, the position of
UK institutions falls in the rankings and their average centrality val-
ues are not above network average, with the exception of the high
ranking according to the EC in the aggregated graph, inherited from
the high score reached by UK for this indicator in P1.

It is also important to remark the special case of the CC. Most
of the nodes in each of the four networks have really similar values
of average distance and, therefore, similar values of CC. This can be
observed in Table IV where the average value for UK nodes and the
total average value are very similar and implies that CC values for
countries, shown in Table III, are really dependent on the number
of institutions of each country in the GCC.

Finally, to characterize the structural changes suffered by the
removal of UK research institutions, we focus on three main descrip-
tors, namely, the global and local network efficiencies49,50 and
the community structure.51 The first two metrics were originally
designed to characterize the quality of information exchange among
nodes of a network both at global and local scales, while the third one
focuses on the mesoscale by analyzing the partition of the network
into groups of nodes that are tightly connected.

1. Global efficiency

Global efficiency, EG(G), accounts for the ability of a network
to connect any given pair of nodes. In particular, given a weighted
graph G as those described above for European projects, the global
efficiency is calculated as follows. First, weighted shortest paths are
computed for each pair (i,j) of nodes in G. To this aim, we assume
that the length lij of an existing link (i, j) is equal to the inverse of
its weight wij. This way, we consider that the more projects two
institutions are commonly involved in, the closer is their mutual
relationship. With this proviso, the distance dij between institutions
i and j is defined as the sum of the link lengths over the shortest
path connecting i and j. Note that shortest in the context of weighted
graphs refers to the path connecting i and j for which the sum of the
link lengths is the minimum possible, i.e., regardless of the number
of links crossed in this path. Finally, the efficiency Eij in the commu-
nication from i to j is assumed to be inversely proportional to the
length of the shortest path, i.e., Eij = 1/dij and, correspondingly, the
global efficiency of graph G is defined as the average of Eij over all

the pairs of nodes,

EG(G) = 1

N(N − 1)

∑

i,j6=i

1

dij

. (5)

Note that, according to this definition, in case there is no path
connecting i to j, we obtain dij = ∞, leading to a 0 value for the
efficiency in the communication between these nodes.

2. Local efficiency

Local efficiency, EL(G), aims at capturing the robustness of a
network under small scale failures. In particular, it measures the
cohesiveness of the neighborhoods around single nodes in order to
quantify how well information would be exchanged by the acquain-
tances of a node in the event the latter is removed from the network.
To compute EL(G), one takes the average of all the global efficien-
cies of the N subgraphs Gi resulting from considering the neighbors
of each node i and all their interconnections (excluding those with
node i). As a result, the local efficiency of a network G is

EL(G) = 1

N

∑

i

EG(Gi). (6)

Note that, for a complete (unweighted) subgraph Gi (where the
neighbors of i form also a complete graph), the Efficiency is max-
imum EG(Gi) = 1. On the other hand, the minimum case appears
whenGi is a star graph centered in i, since the absence of connections
among the neighbors of i leads to EG(Gi) = 0.

3. Community analysis

Finally, in addition to the characterization of the networks at
the global and local scales, we tackle their mesoscopic description by
computing their partition into communities.51 Mesoscopic proper-
ties of a network refer to the features and effects that emerge from
the interplay of nodes in groups whose size is certainly smaller than
the whole network size.

In this work, the community structure is seen as a proxy of the
fragmentation of the network, under the hypothesis that inside a
community, it is easier to transmit information, spread knowledge,
or get new partners for a future project. In case BREXIT produces
a fragmentation originating a considerably bigger number of com-
munities, it could be a symptom of the network fragility at this level.
A similar approach can be seen in Ref. 44 where the authors use
the concept of component, based on the assumption that a larger
number of components is associated with higher fragmentation.
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The procedure used here to obtain the community structure
is the partitioning method known as Louvain,52 which requires the
size of the network and its weight nature. As many other methods
in the network literature,51 that of Louvain is based on the optimiza-
tion of modularity. The modularity of a network partition53 accounts
for the fraction of edges that fall within the proposed groups minus
the expected fraction if edges were distributed at random. For a
weighted network G, the modularity of a given partition into n
communities, {c1, . . . , cn}, is given by

Q(G; {c1, . . . , cn}) = 1

2m

∑

i,j

[

wij −
sisj

2m

]

δ(ci, cj), (7)

where si is the strength of node i, si = ∑

j wij, and m is the total

weight of the network 2m = ∑

i si.
Given a network G, finding the exact partition with the max-

imum possible value of Q by testing all possible partitions is not
computationally feasible and hence heuristic optimization algo-
rithms are needed. The Louvain method tackles the problem by
focusing first on small communities in which modularity is max-
imized locally. These communities are subsequently transformed
into single nodes that, in turn, form a new network (smaller than
the original one) in which a similar local modularity optimization is
implemented. The sequence of local optimizations produces nearly
optimal partitions in a computationally fast way.

C. Network comparisons

As already introduced, our goal in this work is to quantify
BREXIT effects in the network of European projects by comparing
the before- and after-BREXIT networks through the computation of
the former network descriptors. However, in order to assess whether
the impact of BREXIT is significant regarding a network descriptor
or not, it is not enough to compare the measurements made in the
original and the perturbed networks. Then, we will compare the net-
work without the UK nodes with a series of networks obtained by
removing a similar quantity of European institutions chosen at ran-
dom. The random node removal process is as simple as selecting n
nodes randomly from the network and removing these nodes, where
n is the number of nodes that belong to UK for each network. This
way, the resulting (reduced) random network has the same number
of nodes than the network without the UK nodes.

For this statistical comparison, we have generated a set of 500
random networks for each of the research collaboration network and
computed the average values and the statistical median of the main
structural descriptors after this set of random deletion of nodes.

Regarding the statistical significance, its computation is not
straightforward in this case. We rejected the possibility of obtain-
ing the significance by means of the statistical mean and standard
deviation because of the non-Gaussian and non-symmetric form of
the probability distribution (histograms) obtained from the random
set of networks, as we can see in Sec. III. Therefore, we have assumed
as statistical significance of a testing value (BREXIT value), given a
probability distribution (obtained from evaluating the ensemble of
random networks), one minus the probability of obtaining a value
from the probability distribution, as extreme or more extreme than
the testing value.

The significance defined above is computed as follows, given an
ordered data sample and the testing value:

sfc(x′) = 2 ×
∣

∣

∣

nx′

N
− 0.5

∣

∣

∣
, (8)

where x′ is the testing value, nx′ is the number of data between x′ and
the lowest end of the data sample, and N is the size of the sample. In
order to be able to apply this formula, we assume that the numeri-
cal probability distribution (histograms obtained from the random
sets of networks) is a proper representation of the real probability
function. Therefore, this computation is equivalent to calculate the
probability distribution area further from the median than the test-
ing value, multiplied by two since we are interested in a two-sided
test.

This significance goes from 0 when x′ is equal to the median
to 1 when x′ is greater/less than the maximum/minimum of sam-
ple data. In our case, the testing value is the descriptor value for the
network without UK nodes and the sample data are the descriptor
values for the random set of networks.

While the former procedure allows evaluating the significance
of many quantitative measurements (such as the change in the local
and global efficiencies), the comparison between different network
partitions demands more elaborated metrics. To this aim, here we
make use of the Wallace index,54 W, for measuring the similarity of
two different partitions of the same set of N objects (nodes in our
case) in groups, communities, or clusters. Wallace similarity index
is obtained by computing the pairs of nodes which belong to the
same group (community) in each partition. In a general case, given
two partitions, there are T pairs of nodes that are together in the
same group in both partitions, P pairs of nodes that are together
in the same group in the first partition, and Q pairs of nodes that
are together in the same group in the second partition. Given these
numbers, the Wallace Index is expressed as follows:

W =
√

T

P
·
√

T

Q
= T√

Q · P
, (9)

i.e., the geometric mean of the fraction T
P

of nodes that are in the
same group in first partition are also in the same group in the second
partition, and the fraction T

Q
of nodes that are in the same group in

the second partition are also in the same group in the first partition.
In our case, we use the Wallace Index to measure the similarity

between the partition into communities of the original network and
that of the network without the UK institutions. We compare the
similarity value W obtained for each program and the aggregated
network with the corresponding similarities median obtained com-
paring the original networks with those in which nodes are removed
at random. Let us remark that we cannot measure the similarity
of partitions for different sets of nodes; therefore, we only use the
common nodes of the original network and the reduced ones (after
the removal of UK nodes or a random subset of vertices) for the
calculation of W.

III. RESULTS

Let us start by illustrating BREXIT effects at the global scale.
From Fig. 2, we observe that the removal of nodes from a network
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FIG. 2. Values of the global efficiency, EG, for the original networks (dotted line), the collaboration graphs without UK institutions (solid line), and the median of the values for
EG obtained when randomly removing a similar number of nodes to those removed after BREXIT in the corresponding networks. We also show the histogram of these latter
values for a set of 500 networks for which a random deletion of nodes has been implemented. The plots correspond to program P1 (a), P2 (b), P3 (c), and the aggregated
network (d).

leads to the decrease of global efficiency in the damaged networks
with respect to the original one (dotted line). This decrease is due to
the remotion of links attached to the deleted vertices, thus decreas-
ing the global connectivity of the graph. However, the differences

between the effects of BREXIT and random deletion of institutions
depend strongly on the specific research program.

In particular, for P1 [Fig. 2(a)], the decrease in the global effi-
ciency of BREXIT (solid line) is significantly larger [sfc(EG

BREXIT)
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= 0.85] than that produced randomly (dashed line). However, for
P2 [Fig. 2(b)], the effect is the opposite, and the decrease of EG with
respect to the original graph is significantly smaller [sfc(EG

BREXIT)

= 0.95] for BREXIT network than that produced by random dele-
tion of nodes. The different behavior for the change in EG in P1 and
P2 is clearly connected to the different centrality of UK institutions
in these networks. While for P1, UK nodes are on the top of the rank-
ings, display high values for X̃UK, and their average centrality values
are greater than average network nodes, this is not the case for P2,
pointing out that the deletion of UK institutions in P1 will cause the
loss of more shortcuts than randomly expected while the opposite
holds for P2.

Following the former reasoning and by looking the centrality
rankings reached by UK institutions and their average centrality
ratio in the P3 and aggregated networks, we can conclude that the
deletion of UK institutions would not produce remarkable differ-
ences with respect to the deletion of randomly chosen nodes. The
average BC of UK nodes in P3 is less than the network average
value, but it is compensated by the EC and the opposite occurs
for aggregated network, where the lower average EC is compen-
sated by BC. This is confirmed in Figs. 2(c)–2(d) from which it
is clear that BREXIT produces slightly less efficient networks than
randomly expected but, clearly, the differences are not significant
enough [sfc(EG

BREXIT) = 0.48 for P3], especially for the aggregated
graph [sfc(EG

BREXIT) = 0.006 for aggregated graph] in which the two
values for EG in the perturbed networks (BREXIT and random) are
roughly the same.

The effects of nodes remotion in the local efficiency EL of a
network is not as obvious as in the case of global efficiency, for
which a decrease in EG is always expected. The outcome, in terms
of local efficiency, depends strongly on the nature of the nodes
removed. In particular, when the nodes removed and their origi-
nal neighborhoods form dense subgraphs, their remotion leads to
a strong decrease in EL. On the contrary, when the nodes removed
are mostly centers of star-like subgraphs, their deletion increases EL

with respect to the original network.
In Fig. 3, we have plotted the effects produced by the targeted

(BREXIT) and random deletion of nodes in EL for the tree spe-
cific programs and the aggregated collaboration network. Remark-
ably, in the four networks, the random remotion of institutions
always yields (on average) a decrease in EL. This change is signifi-
cant for P1 [Fig. 3(a)], P2 [Fig. 3(b)], and P3 [Fig. 3(c)] networks
[sfc(EL

OriginalNetwork) = 0.75 for P1, sfc(EL
OriginalNetwork) = 0.80 for P2

and sfc(EL
OriginalNetwork) = 0.71 for P3], but almost negligible for the

aggregated network [Fig. 3(d)] [sfc(EL
OriginalNetwork) = 0.06]. However,

this is not the case for networks without UK institutions since the
relative increment/decrease of EL depends on the specific program.
In particular, for P1 (similarly to what was found for EG), the net-
work after BREXIT becomes significantly less locally efficient than
randomly expected [sfc(EL

BREXIT) = 0.77]. However, while for P2,
no significant [sfc(EL

BREXIT) = 0.53] differences are found between
BREXIT and the random remotion of nodes, for P3, the situation
is the opposite to that of P1, pointing out that those subgraphs cen-
tered around UK institutions in P3 are much more sparse than the
average [sfc(EL

BREXIT) = 0.91 for P3]. Finally, in the aggregated net-
work [sfc(EL

BREXIT) = 0.97 for aggregated network] we find a similar

scenario to that of P3 since, P3 being the largest specific network,
its behavior according to EL dominates when integrating the three
networks into the aggregated one.

Now, we focus on the reorganization of the collaboration net-
work at the mesocopic scale. In Fig. 4, we show the size of the seven
largest communities (Cα) in the four networks after BREXIT. The
bar plots also show the composition of these largest communities in
terms of the ten largest communities (Cα′) in the original networks.
The new and original communities are also termed after the node
(institutions) with the largest number of collaborations in the cor-
responding community. In addition, in Fig. 5, we report the values
of the Wallace Index that compare the original partitions of the four
networks with the new ones after BREXIT (WBREXIT) and with those
obtained in the set of networks where an identical number of insti-
tutions are removed (Wrandom). The values from the set of random
networks are represented by the histogram (the dashed line corre-
sponds to the median) and the WBREXIT is represented by the solid
line.

In the first network P1, the deletion of the UK institutions
makes the original largest community C1′ disappear, the largest frac-
tion of its nodes being placed at the new community C7. Besides,
most of the nodes of the former community C2′ compose the new
community C3, while the third original community C3′ is roughly
split between new clusters C2 and C5. Thus, from this picture, we
conclude that the mesoscopic consequences of BREXIT in P1 is to
break many original clusters to form the new ones.

For P2 and P3, the main original groups are retained more
in the new partition after BREXIT, especially in the case of P3 for
which the first and second largest communities C1′ and C2′ remain
almost the same. The larger similarities for the new partitions in
P2 and P3 are revealed also by comparing their respective values
of WBREXIT with that for P1 (WBREXIT = 0.35 for P1, WBREXIT = 0.47
for P2, and WBREXIT = 0.56 for P3). However, the three values for
WBREXIT do not display significative differences when compared to
the corresponding values of Wrandom [sfc(WBREXIT) = 0.31 for P1,
sfc(WBREXIT) = 0.28 for P2 and sfc(WBREXIT) = 0.36 for P3], point-
ing out that the removal of UK institutions, although changing the
original partition, do not yield a different mesoscopic reorganization
from those obtained by randomly removing nodes.

In the case of the aggregated network, although we cannot state
that the WBREXIT = 0.44 is significantly different from the random
values [sfc(WBREXIT) = 0.52], we can observe that its significance
is considerably larger than that of the individual programs. From
Fig. 4, we observe that the largest community C1 does not corre-
spond to a single original community but is composed of a small
fraction of the largest original community C1′ and part of the third
most populated original cluster C3′. For the remaining new clusters,
we observed that almost every new community can be identified
with an original one: C2 with C1′, C3 with C4′, C4 with C5′, C5

with C9′, C6 with C2′, and C7 with C7′. However, especially in the
case of C2, C3, and C6, the former correspondences come together
with a decrease in the size of the institutions from the original
clusters.

In order to strengthen this similarity analysis, we also present a
comparison (see Table V) for the number of communities and their
size distribution in the partitions found for the network without UK
nodes and the set of random networks, for each program.
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FIG. 3. Values of the local efficiency, EL, for the original networks (dotted line), the collaboration graphs without UK institutions (solid line), and the median of the values for
EL obtained when randomly removing a similar number of nodes to those removed after BREXIT in the corresponding networks. We also show the histogram of these latter
values for a set of 500 networks for which a random deletion of nodes have been implemented. The plots correspond to program P1 (a), P2 (b), P3 (c), and the aggregated
network (d).

The comparison has been performed as follows: for each net-
work (BREXIT or each in the random set), we obtain the community
partition and compute three descriptors: the number of communi-
ties, the average size of the communities, and the standard deviation

of the communities size. Then, we have the statistical distribution
median (from the random set of networks) and the value of BREXIT
partition, for each of the three descriptors. Finally, we compute
the statistical significances to compare the BREXIT partition to the
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FIG. 4. Size of the seven largest communities (Cα ) in the four collaboration networks after BREXIT. The color code in the bar plots shows the composition of the former
communities in terms of the ten largest communities in the four original networks (Cα′). The names describing the new and original communities refer to those institutions
displaying the largest number of collaborations within the corresponding community.

Chaos 30, 063145 (2020); doi: 10.1063/1.5139019 30, 063145-10

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Values of Wallace index computed comparing the BREXIT network and the former network (WBREXIT , represented by solid lines) and histograms for the Wallace
index values comparing the set of random networks and the former network (WRandom is the median of the histograms and is represented by dashed lines), for each of the
three research programs and the aggregated network. The random set is composed of 500 graphs.

random set of networks partitions, for each program and the aggre-
gated network. This additional analysis provides a more detailed
idea about the nature of community partitions we are computing
the Wallace Index for.

Looking at Table V, we can conclude that networks with-
out UK nodes are consistent with the statistical sample regarding
the communities size. Regarding the average size, we can observe
some statistical differences for P1, in which the community partition
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TABLE V. Comparison table for the number of communities in partition (NBREXIT,

NRandom), the average size of communities (〈Size〉BREXIT, 〈Size〉Random), and the dis-
persion of communities size distribution (σ size

BREXIT
, σ size

Random
). We present values for

the median of the random set of networks, the network without UK nodes, and the

significance of this value, for each of the three programs and the aggregated network.

Network P1 P2 P3 Aggregated

NBREXIT 26 37 27 35
NRandom 24 37 31 35
sfc(NBREXIT) 0.52 0.0 0.94 0.0
〈Size〉BREXIT 109.0 153.9 321.1 398.0
〈Size〉Random 120.0 149.9 280.0 391.7
sfc(〈Size〉BREXIT) 0.87 0.41 0.94 0.16
σ size

BREXIT 64.0 122.2 247.9 398.8
σ size

Random 65.8 110.4 238.5 403.4
sfc(σ size

BREXIT) 0.16 0.7 0.44 0.4

becomes slightly more disaggregated when removing UK nodes than
random nodes. On the other hand, for P3, the effect is the oppo-
site, the community partition for the networks without UK nodes is
more compact than the partitions of random networks. This implies
that the analysis for P3, in terms of the Wallace Index, is not as
meaningful as for the other networks, since the Wallace Index has
a strong dependence on the number and size of communities in the
compared partitions.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed the efficiency and robustness under BREXIT
of the European research collaboration networks formed through
H2020 projects. Our analysis has been carried out at global, local,
and mesoscopic levels by measuring global and local efficiency and
the structure of communities, respectively. The collaboration net-
works analyzed correspond to the three main H2020 programs
(Excellent Science, Industrial Leadership, and Societal Challenges)
as well as to the aggregation of them.

The main conclusion is that this European R&D network is
mature enough to resist a rather dramatic event like BREXIT. With
the EU support, the different entities participating in H2020 have
woven a dense web of interrelations with high connectivity (despite
that we have considered that two nodes are related only if one of
them is the coordinator of the common project), efficiency, and
robustness under a targeted intervention such as BREXIT. We have
studied how those different network metrics vary when UK insti-
tutions are removed and we have compared them with null models
in which the same quantity of nodes is randomly removed from the
network. Some differences appear as a function of the metric and of
the program studied.

In terms of global efficiency, the Excellent Science program is
the one that suffers a bigger negative impact, reflecting the impor-
tance of the UK to it as revealed by the highly central role played
by UK institutions in this specific program. On the contrary, in
the Industrial Leadership program, the deletion of UK nodes has a
smaller impact than the elimination of the same number of nodes
at random. In the case of local efficiency, we also find a significant

decrease for the Excellent Science program while, for the Societal
Challenges program and the aggregated networks, this local effi-
ciency is larger in the network without the UK nodes than when
removing nodes at random, and also bigger than in the original net-
works. This result indicates that, in these networks, UK nodes pro-
vide an important connectivity at the local level or, in other words,
that their neighbors have a scarce connectivity (lower than the aver-
age) between them. Finally, at the mesoscale, we have observed that
BREXIT does not create a large destruction of the R&D communities
formed under H2020, despite its effect being different depending on
the program, the larger being in the Excellent Science case.

In summary, we can conclude that, from a network perspec-
tive, BREXIT will not cause a dramatic effect in the European R&D
ecosystem created under the H2020 program, thanks to the dense
and robust interrelations established among many entities of the
different European countries.
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