47 research outputs found

    Effect modification of air pollution on Urinary 8-Hydroxy-2'-Deoxyguanosine by genotypes: an application of the multiple testing procedure to identify significant SNP interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution is associated with adverse human health, but mechanisms through which pollution exerts effects remain to be clarified. One suggested pathway is that pollution causes oxidative stress. If so, oxidative stress-related genotypes may modify the oxidative response defenses to pollution exposure.</p> <p>Methods</p> <p>We explored the potential pathway by examining whether an array of oxidative stress-related genes (twenty single nucleotide polymorphisms, SNPs in nine genes) modified associations of pollutants (organic carbon (OC), ozone and sulfate) with urinary 8-hydroxy-2-deoxygunosine (8-OHdG), a biomarker of oxidative stress among the 320 aging men. We used a Multiple Testing Procedure in R modified by our team to identify the significance of the candidate genes adjusting for <it>a priori </it>covariates.</p> <p>Results</p> <p>We found that glutathione S-tranferase P1 (GSTP1, rs1799811), M1 and catalase (rs2284367) and group-specific component (GC, rs2282679, rs1155563) significantly or marginally significantly modified effects of OC and/or sulfate with larger effects among those carrying the wild type of GSTP1<it/>, catalase, non-wild type of <it>GC </it>and the non-null of GSTM1.</p> <p>Conclusions</p> <p>Polymorphisms of oxidative stress-related genes modified effects of OC and/or sulfate on 8-OHdG, suggesting that effects of OC or sulfate on 8-OHdG and other endpoints may be through the oxidative stress pathway.</p

    Dietary carotenoid-rich oil supplementation improves exercise-induced anisocytosis in runners: influences of haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms in dilutional pseudoanemia (sports anemia)

    Get PDF
    Physical training induces beneficial adaptation, whereas exhaustive exercises increase reactive oxygen-species generation, thereby causing oxidative damage in plasma and erythrocytes, fractions susceptible to lipid peroxidation. Pequi (Caryocar brasiliense Camb.) is a Brazilian Cerrado fruit containing a carotenoid-rich oil. The aim was to investigate the effects of pequi-oil on exercise-induced oxidative damage in plasma and erythrocytes, after running in the same environment and undergoing weekly training under the same conditions as to type, intensity and length. Evaluations were accomplished after outdoor running on flat land before and after ingestion of 400 mg pequi-oil capsules for 14 days. Blood samples were taken after running and submitted to TBARS assay and erythrogram analysis. Haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms were priorly investigated, so as to estimate genetic influence The reduction in erythrocytes, hemoglobin and hematocrit after pequi-oil treatment was notably associated with higher plasma expansion. Except for MCHC (mean corpuscular hemoglobin concentration) and RDW (red cell distribution width), the results were influenced by the polymorphisms studied. The best response to pequi-oil was presented by MnSOD Val/Val, CAT AA or AT genotypes and the GPX1 Pro allele. The significantly lower RDW and higher MHCH values were related to pequi-oil protective effects. Pequi oil, besides possessing other nutritional properties, showed protective blood effects

    Cadmium-Induced Oxidative Stress and Apoptotic Changes in the Testis of Freshwater Crab, Sinopotamon henanense

    Get PDF
    Cadmium (Cd), one of the most toxic environmental and industrial pollutants, is known to exert gonadotoxic and spermiotoxic effects. In the present study, we examined the toxic effect of Cd on the testis of freshwater crab, Sinopotamon henanense. Crabs were exposed to different Cd concentrations (from 0 to 116.00 mg·L−1) for 7 d. Oxidative stress and apoptotic changes in the testes were detected. The activities of SOD, GPx and CAT initially increased and subsequently decreased with increasing Cd concentrations, which was accompanied with the increase in malondialdehyde (MDA) and H2O2 content in a concentration-dependent manner. Typical morphological characteristic and physiological changes of apoptosis were observed using a variety of methods (HE staining, AO/EB double fluorescent staining, Transmission Electron Microscope observation and DNA fragmentation analysis), and the activities of caspase-3 and caspase-9 were increased in a concentration-dependent manner after Cd exposure. These results led to the conclusion that Cd could induced oxidative damage as well as apoptosis in the testis, and the apoptotic processes may be mediated via mitochondria-dependent apoptosis pathway by regulating the activities of caspase-3 and caspase-9

    Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors

    Get PDF
    Context Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). Objective To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. Design 12-year prospective, observational study. Participants & Setting We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. Interventions & Outcome AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). Results Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). Conclusions Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course

    Blood Catalase Activities, Catalase Gene Polymorphisms and Acatalasemia Mutations in Hungarian Patients with Diabetes Mellitus

    No full text
    Introduction: Catalase decomposes hydrogen peroxide into oxygen and water. Its low concentration could be involved in signaling while its high concentration is toxic.Aim: This short review discusses the association of blood catalase and diabetes mellitus in Hungarian diabetic patients.Results: Several cohort studies showed decreased blood catalase activity in type 2 diabetes and in gestational diabetes.&nbsp;Among the catalase gene polymorphisms rs769217 showed a weak association with type 1 diabetes. Regarding rs1001179 polymorphism patients with TT genotype have a risk for lower life expectancy.&nbsp;In acatalasemics the frequency of diabetes mellitus is higher (P˂0.001) than in the Hungarian population. 11 of 12 known Hungarian acatalasemia mutations are found in diabetic patients. Acatalasemia may be associated with a higher risk for diabetes mellitus especially for its type 2 form.Acatalasemia mutations could explain the decreased (˂50%) blood catalase activities only in 17.4% of the cases.&nbsp;Conclusions: Blood catalase activity is decreased in type 2 and gestional diabetes. Patients with inherited catalase deficiency and known acatalasemia mutation are at higher risk of diabetes mellitus.The lifelong effect of oxidative damage on the oxidant sensitive, insulin producing pancreatic beta-cells could contribute to the manifestation of diabetes mellitus especially to type 2 form.Acatalasemia mutations could explain the reason for the catalase decrease while for the other (82.6 %) cases it remains unsolved.The decreased blood catalase activity in type 2 and gestational diabetes rather due to regulatory mechanisms than to the catalase gene mutations.</p
    corecore