10 research outputs found

    Genetic Removal of the CH1 Exon Enables the Production of Heavy Chain-Only IgG in Mice

    Get PDF
    Nano-antibodies possess great potential in many applications. However, they are naturally derived from heavy chain-only antibodies (HcAbs), which lack light chains and the CH1 domain, and are only found in camelids and sharks. In this study, we investigated whether the precise genetic removal of the CH1 exon of the γ1 gene enabled the production of a functional heavy chain-only IgG1 in mice. IgG1 heavy chain dimers lacking associated light chains were detected in the sera of the genetically modified mice. However, the genetic modification led to decreased expression of IgG1 but increased expression of other IgG subclasses. The genetically modified mice showed a weaker immune response to specific antigens compared with wild type mice. Using a phage-display approach, antigen-specific, single domain VH antibodies could be screened from the mice but exhibited much weaker antigen binding affinity than the conventional monoclonal antibodies. Although the strategy was only partially successful, this study confirms the feasibility of producing desirable nano-bodies with appropriate genetic modifications in mice

    Effect of Indoxyl Sulfate on the Repair and Intactness of Intestinal Epithelial Cells: Role of Reactive Oxygen Species’ Release

    No full text
    Chronic kidney disease (CKD) is characterized by an oxidative stress status, driving some CKD-associated complications, even at the gastrointestinal level. Indoxyl Sulfate (IS) is a protein-bound uremic toxin, poorly eliminated by dialysis. This toxin is able to affect the intestinal system, but its molecular mechanism/s in intestinal epithelial cells (IECs) remain poorly understood. This study’s aim was to evaluate the effect of IS (31.2−250 µM) on oxidative stress in IEC-6 cells and on the intactness of IECs monolayers. Our results indicated that IS enhanced oxidative cell damage by inducing reactive oxygen species (ROS) release, reducing the antioxidant response and affecting Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation as well its related antioxidant enzymes. In the wound healing assay model, IS reduced IEC-6 migration, slightly impaired actin cytoskeleton rearrangement; this effect was associated with connexin 43 alteration. Moreover, we reported the effect of CKD patients’ sera in IEC-6 cells. Our results indicated that patient sera induced ROS release in IEC-6 cells directly related to IS sera content and this effect was reduced by AST-120 serum treatment. Results highlighted the effect of IS in inducing oxidative stress in IECs and in impairing the intactness of the IECs cell monolayer, thus significantly contributing to CKD-associated intestinal alterations

    Pro-Inflammatory Effects of Indoxyl Sulfate in Mice: Impairment of Intestinal Homeostasis and Immune Response

    Get PDF
    The intestines are recognized as the main source of chronic inflammation in chronic kidney disease (CKD) and, among other cells, macrophages are involved in modulating this process as well as in the impaired immune response which also occurs in CKD patients. In this study, we evaluated the effect of Indoxyl Sulfate (IS), a protein bound uremic toxin poorly eliminated by hemodialysis, on inflammatory, oxidative stress and pro-apoptotic parameters, at the intestinal level in mice, on intestinal epithelial cells (IEC-6) and on primary murine peritoneal macrophages. C57BL/6J mice were treated with IS (800 mg/kg i.p.) for 3 or 6 h and histopathological analysis showed that IS induced intestinal inflammation and increased cyclooxygenase-2 (COX-2), nitrotyrosine and Bax expression in intestinal tissue. In IEC-6 cells, IS (125-1000 µM) increased tumor necrosis factor-α levels, COX-2 and inducible nitric oxide synthase expression and nitrotyrosine formation. Moreover, IS increased pro-oxidant, pro-inflammatory and pro-apoptotic parameters in peritoneal macrophages from IS-treated mice. Also, the serum concentration of IS and pro-inflammatory levels of cytokines resulted increased in IS-treated mice. Our results indicate that IS significantly contributes to affect intestinal homeostasis, immune response, and to induce a systemic pro-inflammatory state thus highlighting its potential role as therapeutic target in CKD patients

    Measurement and modelling of the thermodynamic properties of carbon dioxide mixtures with HFO-1234yf, HFC-125, HFC-134a, and HFC-32: vapour-liquid equilibrium, density, and heat capacity

    No full text
    Measurements of the thermodynamic properties for a series of more environmentally-friendly refrigerant mixtures containing hydrofluorocarbons (HFCs), hydrofluoroolefins (HFOs), and carbon dioxide (CO2) were conducted. These new property data help increase confidence in the design and simulation of refrigeration processes that use CO2 + HFO + HFC refrigerant mixtures. The HFCs of interest were R32, R125, and R134a and the HFO tested was R1234yf. The measurements collected were prioritised to fill gaps in the available literature data. Vapour-liquid equilibrium plus liquid-phase density and heat capacity data were collected for different binary mixtures containing HFCs, HFOs and CO2, with the liquid phase measurements spanning (223 to 323) K and (1 to 5) MPa. The measured data, as well as data from the literature, were then used to tune the mixture parameters in the models used by NIST's REFPROP 10 software package to improve the prediction of thermodynamic properties for these fluids. To test the predictive capabilities of the models tuned to the binary mixtures, thermodynamic property data were also measured for four ternary mixtures and a five-component mixture of HFCs, HFOs and CO2. The new models developed in this work significantly improved the root mean square deviations of the predicted properties for these multi-component mixtures: the most significant reductions were about a factor of two in density
    corecore