118 research outputs found

    Galápagos sea lion behavior differences in relation to human exposure

    Get PDF
    Our study examined the behavioral differences of the Galápagos sea lion (Zalophus wollebaeki) in relation to human presence. Our main goal was to determine whether sea lions would be more aggressive as a result of high frequencies of human exposure. We hypothesized that sea lions would behave differently in relation to varying rates of human exposure and we predicted that there would be more aggressive and interactive behaviors on beaches with higher frequencies of human exposure (as the humans may disturb the normal behavioral patterns of the sea lions). Data was collected daily at low tide in two-hour intervals. Our study took place during July 2014 on Isla San Cristóbal on three beaches near Puerto Baquerizo Moreno, Galápagos Islands, Ecuador. We recorded the number of people and sea lions on each beach during each data collection, as well as any observed behavioral characteristics of sea lions. We categorized behavioral characteristics of sea lions as aggressive, interactive but non-aggressive, and non-interactive both on terrestrial and aquatic environments. In addition, we accounted for the frequency of interactions in relation to the size of the beach in which data was collected. Results from a Chi-squared goodness of fit test showed that there was a significant difference in the sea lions’ behavior in relation to human exposure (p \u3c 0.0001). Further analysis showed that sea lions tend to be more aggressive in response to higher frequencies of human exposure (p \u3c 0.0001). Previous studies have shown that high rates of human exposure in sea lion habitats can result in a decrease of sea lion populations (French et al., 2011). With regards to these results, there should be a consideration for how human exposure can affect the behavior of sea lions. Tourism in the Galápagos Islands remains prevalent, which can potentially disrupt the natural behavior of protected species if humans disrupt the animals’ natural behavior

    Analysis of Mice Lacking DNaseI Hypersensitive Sites at the 5′ End of the IgH Locus

    Get PDF
    The 5′ end of the IgH locus contains a cluster of DNaseI hypersensitive sites, one of which (HS1) was shown to be pro-B cell specific and to contain binding sites for the transcription factors PU.1, E2A, and Pax5. These data as well as the location of the hypersensitive sites at the 5′ border of the IgH locus suggested a possible regulatory function for these elements with respect to the IgH locus. To test this notion, we generated mice carrying targeted deletions of either the pro-B cell specific site HS1 or the whole cluster of DNaseI hypersensitive sites. Lymphocytes carrying these deletions appear to undergo normal development, and mutant B cells do not exhibit any obvious defects in V(D)J recombination, allelic exclusion, or class switch recombination. We conclude that deletion of these DNaseI hypersensitive sites does not have an obvious impact on the IgH locus or B cell development

    Enforced Expression of the Transcriptional Coactivator OBF1 Impairs B Cell Differentiation at the Earliest Stage of Development

    Get PDF
    OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation

    Metatranscriptomics and Pyrosequencing Facilitate Discovery of Potential Viral Natural Enemies of the Invasive Caribbean Crazy Ant, Nylanderia pubens

    Get PDF
    BACKGROUND: Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. METHODOLOGY AND PRINCIPAL FINDINGS: Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. CONCLUSIONS: Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest

    Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    Get PDF
    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs

    When Subterranean Termites Challenge the Rules of Fungal Epizootics

    Get PDF
    Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle

    Resource quality determines the evolution of resistance and its genetic basis

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData Availability: All the experimental data to support the findings of this study including all virus assay and development data is available at DataDryad. https://doi.org/10.5061/dryad.k98sf7m4g. The complete sequencing data in CRAM format is available from the European Bioinformatics Institute (EBI), under accession number PRJEB27964.Parasites impose strong selection on their hosts, but the level of any evolved resistance may be constrained by the availability of resources. However, studies identifying the genomic basis of such resource‐mediated selection are rare, particularly in non‐model organisms. Here, we investigated the role of nutrition in the evolution of resistance to a DNA virus (PiGV), and any associated trade‐offs in a lepidopteran pest species (Plodia interpunctella). Through selection experiments and whole genome re‐sequencing we identify genetic markers of resistance that vary between the nutritional environments during selection. We do not find consistent evolution of resistance in the presence of virus but rather see substantial variation among replicate populations. Resistance in a low nutrition environment is negatively correlated with growth rate, consistent with an established trade‐off between immunity and development, but this relationship is highly context dependent. Whole genome resequencing of the host shows that resistance mechanisms are likely to be highly polygenic and although the underlying genetic architecture may differ between high and low nutrition environments, similar mechanisms are commonly used. As a whole, our results emphasise the importance of the resource environment on influencing the evolution of resistance.Natural Environment Research Council (NERC)National Institutes of Health (NIH
    corecore