76 research outputs found
Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro
Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using this data, we develop a simple deterministic model, which allows us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to reverse established drug resistance based on the model prediction by modulating antibiotic selection stresses. Our results support the idea that the development of antibiotic resistance may be potentially controlled via continuous switching of drugs
Phenotypic convergence in bacterial adaptive evolution to ethanol stress
Stability of ethanol tolerance. Strain F at the end point (2,500 h) and at 576 h was cultivated for 200 generations absent ethanol stress. After the cultivation, ethanol tolerance was evaluated by measuring specific growth rates in 5 % ethanol stress (red bars). The growth rates under ethanol stress were similar to those before the non-stress cultivation (blue bars) and were significantly higher than that of the parent strain. (PDF 976 kb
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
The Swine Erysipelas Vaccine SER-ME Effectively Protects Pigs against Challenge with the Erysipelothrix rhusiopathiae M203/I257 SpaA-Type Variant
Erysipelothrix rhusiopathiae causes swine erysipelas (SE). Sporadic SE outbreaks in Japan are mostly caused by the E. rhusiopathiae serovar 1a variant featured by methionine (M) and isoleucine (I) at amino acid positions 203 and 257 of the surface protective antigen (Spa) A protein (M203/I257 SpaA-type). To determine if current vaccines are effective against infection with this variant in pigs, one representative inactivated vaccine, SER-ME (containing E. rhusiopathiae serovar 2a), was evaluated. All vaccinated pigs survived without any apparent clinical signs after lethal challenge with the Fujisawa reference strain or the variant. This indicates that the SER-ME vaccine effectively protects pigs against the infection of E. rhusiopathiae M203/I257 SpaA-type variant. Current vaccines in Japan, including SER-ME, suggest that outbreaks in Japan are unlikely caused by vaccine failure
Bacteriophage can lyse antibiotic-resistant Pseudomonas aeruginosa isolated from canine diseases
Pseudomonas aeruginosa is a pathogen frequently identified as the cause of diverse infections or chronic disease. This microbe has natural resistance to several kinds of antibiotics, because of the species’ outer membrane, efflux pumps and growth as a biofilm. This bacterium can acquire increased resistance with specific point mutations. Bacteriophage (phage), however, can lyse these bacteria. Therefore, in the present study, we assessed the host range of phages isolates and their ability to lyse antibiotic-resistant P. aeruginosa. Present phages could lyse many strains of P. aeruginosa (28/39), including strains with high resistance to fluoroquinolones (4/6). In conclusion, application of phages for antibiotic-resistant bacteria is greatly effective. To avoid pervasive antibiotic-resistant bacteria, further development of phage usage for disease treatment is required
- …