20 research outputs found

    The potential of eupraxia@sparc_lab for radiation based techniques

    Get PDF
    A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright pulses, with up to 1012 photons/pulse, femtosecond timescale and wavelength down to 3 nm, which lies in the so called “water window”. The experimental activity will be focused on the realization of a plasma driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper, we describe the main classes of experiments that will be performed at the facility, including coherent diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray Scattering and photofragmentation measurements. These techniques will allow studying a variety of samples, both biological and inorganic, providing information about their structure and dynamical behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation source will indeed be made available for THz and pump–probe experiments and a split-and-delay station will allow performing XUV-XUV pump–probe experiments.Fil: Balerna, Antonella. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Bartocci, Samanta. Università degli studi di Sassari; ItaliaFil: Batignani, Giovanni. Università degli studi di Roma "La Sapienza"; ItaliaFil: Cianchi, Alessandro. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Chiadroni, Enrica. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Coreno, Marcello. Istituto Nazionale Di Fisica Nucleare.; Italia. Istituto di Struttura della Materia; ItaliaFil: Cricenti, Antonio. Istituto di Struttura della Materia; ItaliaFil: Dabagov, Sultan. Istituto Nazionale Di Fisica Nucleare.; Italia. National Research Nuclear University; Rusia. Lebedev Physical Institute; RusiaFil: Di Cicco, Andrea. Universita Degli Di Camerino; ItaliaFil: Faiferri, Massimo. Università degli studi di Sassari; ItaliaFil: Ferrante, Carino. Università degli studi di Roma “La Sapienza”; Italia. Center for Life Nano Science @Sapienza; ItaliaFil: Ferrario, Massimo. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Fumero, Giuseppe. Università degli studi di Roma “La Sapienza”; ItaliaFil: Giannessi, Luca. Elettra-Sincrotrone Trieste; Italia. ENEA C.R. Frascati; ItaliaFil: Gunnella, Roberto. Universita Degli Di Camerino; ItaliaFil: Leani, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Lupi, Stefano. Università degli studi di Roma “La Sapienza”; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma La Sapienza; ItaliaFil: Macis, Salvatore. Università degli Studi di Roma Tor Vergata; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma Tor Vergata; ItaliaFil: Manca, Rosa. Università degli studi di Sassari; ItaliaFil: Marcelli, Augusto. Istituto Nazionale Di Fisica Nucleare.; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Masciovecchio, Claudio. Elettra-Sincrotrone Trieste; ItaliaFil: Minicucci, Marco. Universita Degli Di Camerino; ItaliaFil: Morante, Silvia. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Perfetto, Enrico. Universita Tor Vergata; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Petrarca, Massimo. Università degli studi di Roma "La Sapienza"; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Pusceddu, Fabrizio. Università degli studi di Sassari; ItaliaFil: Rezvani, Javad. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Robledo, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Rossi, Giancarlo. Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”; Italia. Istituto Nazionale Di Fisica Nucleare.; Italia. Universita Tor Vergata; ItaliaFil: Sanchez, Hector Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Scopigno, Tullio. Center for Life Nano Science @Sapienza; Italia. Università degli studi di Roma "La Sapienza"; ItaliaFil: Stefanucci, Gianluca. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Stellato, Francesco. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Trapananti, Angela. Universita Degli Di Camerino; ItaliaFil: Villa, Fabio. Istituto Nazionale Di Fisica Nucleare.; Itali

    Transapical mitral valve implantation for treatment of symptomatic mitral valve disease: a real-world multicentre experience.

    Get PDF
    AIMS Transcatheter mitral valve implantation (TMVI) is a new treatment option for patients with symptomatic mitral valve (MV) disease. Real-world data have not yet been reported. This study aimed to assess procedural and 30-day outcomes of TMVI in a real-world patient cohort. METHOD AND RESULTS All consecutive patients undergoing implantation of a transapically delivered self-expanding valve at 26 European centres from January 2020 to April 2021 were included in this retrospective observational registry. Among 108 surgical high-risk patients included (43% female, mean age 75 ± 7 years, mean STS-PROM 7.2 ± 5.3%), 25% was treated for an off-label indication (e.g. previous MV intervention or surgery, mitral stenosis, mitral annular calcification). Patients were highly symptomatic (New York Heart Association [NYHA] functional class III/IV in 86%) and mitral regurgitation (MR) was graded 3+/4+ in 95% (38% primary, 37% secondary, and 25% mixed aetiology). Technical success rate was 96%, and MR reduction to ≤1+ was achieved in all patients with successful implantation. There were two procedural deaths and 30-day all-cause mortality was 12%. At early clinical follow-up, MR reduction was sustained and there were significant reductions of pulmonary pressure (systolic pulmonary artery pressure 52 vs. 42 mmHg, p < 0.001), and tricuspid regurgitation severity (p = 0.013). Heart failure symptoms improved significantly (73% in NYHA class I/II, p < 0.001). Procedural success rate according to MVARC criteria was 80% and was not different in patients treated for an off-label indication (74% vs. 81% for off- vs. on-label, p = 0.41). CONCLUSION In a real-world patient population, TMVI has a high technical and procedural success rate with efficient and durable MR reduction and symptomatic improvement

    Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment

    Get PDF
    Whilst the last decades have seen a clear shift in emphasis from managing natural hazards to managing risk, the majority of natural-hazard risk research still focuses on single hazards. Internationally, there are calls for more attention for multi-hazards and multi-risks. Within the European Union (EU), the concepts of multi-hazard and multi-risk assessment and management have taken centre stage in recent years. In this perspective paper, we outline several key developments in multi-(hazard-)risk research in the last decade, with a particular focus on the EU. We present challenges for multi-(hazard-)risk management as outlined in several research projects and papers. We then present a research agenda for addressing these challenges. We argue for an approach that addresses multi-(hazard-)risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards. In this approach, the starting point is a specific sustainability challenge, rather than an individual hazard or sector, and trade-offs and synergies are examined across sectors, regions, and hazards. We argue for in-depth case studies in which various approaches for multi-(hazard-)risk management are co-developed and tested in practice. Finally, we present a new pan-European research project in which our proposed research agenda will be implemented, with the goal of enabling stakeholders to develop forward-looking disaster risk management pathways that assess trade-offs and synergies of various strategies across sectors, hazards, and spatial scales

    Water Sensitive Urban Design (WSUD) som klimatanpassningsstrategi

    No full text
    “Global floods and extreme rainfall events have surged by more than 50% in the past decade and recent studies show that they are occurring four times higher than in 1980” (Neslen, 2018). At the same time, the urban population is rising. Today, 55% of the world’s population lives in urban areas and it is estimated to increase to 70% by 2050 (United Nations, 2018). This expansion of urbanized areas is correlated with the increase of impermeable surfaces that, in case of extreme weather events, are not able to drain the water efficiently. The rainfall-runoff is channelled from roads, parking lots, buildings, and other impervious surfaces to storm drains and sewers that cannot handle the volume. The high ratio of impermeable surfaces and the increased extreme rainfall events cause severe environmental, social, economical problems in urban areas. Merely technical and engineering solutions are no sufficient, therefore a new approach that can maintain and adapt the natural water cycle inside the urban areas is needed. Ecosystem services and resilience thinking have become key principles in adaptation strategies at different levels, from international policies (e.g. Sustainable Development Goals) to local actions (e.g. Copenhagen adaptation plan 2015) and design (e.g. climate resilient San Kjeld in Copenhagen). In this scenario, the design approach of Water Sensitive Urban Design (WSUD) aims to promote resilience at the local level by managing stormwater, encouraging the defence of the aesthetic value of green and blue areas. WSUD is a multidisciplinary approach that involves water management, urban planning, architecture, and landscape design. The main idea of WSUD is that sustainable stormwater systems should be beautiful, meaningful, and educational (Echols, 2007). This master thesis explores the concept of Water Sensitive Urban Design and its application in the cities of Copenhagen, Malmö and Rotterdam. The case study of PHVision in Heidelberg, Germany, is analysed from the concept of WSUD. Design improvements are suggested stemming from the analysed European examples and the theoretical background

    Water Sensitive Urban Design (WSUD) som klimatanpassningsstrategi

    No full text
    “Global floods and extreme rainfall events have surged by more than 50% in the past decade and recent studies show that they are occurring four times higher than in 1980” (Neslen, 2018). At the same time, the urban population is rising. Today, 55% of the world’s population lives in urban areas and it is estimated to increase to 70% by 2050 (United Nations, 2018). This expansion of urbanized areas is correlated with the increase of impermeable surfaces that, in case of extreme weather events, are not able to drain the water efficiently. The rainfall-runoff is channelled from roads, parking lots, buildings, and other impervious surfaces to storm drains and sewers that cannot handle the volume. The high ratio of impermeable surfaces and the increased extreme rainfall events cause severe environmental, social, economical problems in urban areas. Merely technical and engineering solutions are no sufficient, therefore a new approach that can maintain and adapt the natural water cycle inside the urban areas is needed. Ecosystem services and resilience thinking have become key principles in adaptation strategies at different levels, from international policies (e.g. Sustainable Development Goals) to local actions (e.g. Copenhagen adaptation plan 2015) and design (e.g. climate resilient San Kjeld in Copenhagen). In this scenario, the design approach of Water Sensitive Urban Design (WSUD) aims to promote resilience at the local level by managing stormwater, encouraging the defence of the aesthetic value of green and blue areas. WSUD is a multidisciplinary approach that involves water management, urban planning, architecture, and landscape design. The main idea of WSUD is that sustainable stormwater systems should be beautiful, meaningful, and educational (Echols, 2007). This master thesis explores the concept of Water Sensitive Urban Design and its application in the cities of Copenhagen, Malmö and Rotterdam. The case study of PHVision in Heidelberg, Germany, is analysed from the concept of WSUD. Design improvements are suggested stemming from the analysed European examples and the theoretical background

    Water Sensitive Urban Design (WSUD) som klimatanpassningsstrategi

    No full text
    “Global floods and extreme rainfall events have surged by more than 50% in the past decade and recent studies show that they are occurring four times higher than in 1980” (Neslen, 2018). At the same time, the urban population is rising. Today, 55% of the world’s population lives in urban areas and it is estimated to increase to 70% by 2050 (United Nations, 2018). This expansion of urbanized areas is correlated with the increase of impermeable surfaces that, in case of extreme weather events, are not able to drain the water efficiently. The rainfall-runoff is channelled from roads, parking lots, buildings, and other impervious surfaces to storm drains and sewers that cannot handle the volume. The high ratio of impermeable surfaces and the increased extreme rainfall events cause severe environmental, social, economical problems in urban areas. Merely technical and engineering solutions are no sufficient, therefore a new approach that can maintain and adapt the natural water cycle inside the urban areas is needed. Ecosystem services and resilience thinking have become key principles in adaptation strategies at different levels, from international policies (e.g. Sustainable Development Goals) to local actions (e.g. Copenhagen adaptation plan 2015) and design (e.g. climate resilient San Kjeld in Copenhagen). In this scenario, the design approach of Water Sensitive Urban Design (WSUD) aims to promote resilience at the local level by managing stormwater, encouraging the defence of the aesthetic value of green and blue areas. WSUD is a multidisciplinary approach that involves water management, urban planning, architecture, and landscape design. The main idea of WSUD is that sustainable stormwater systems should be beautiful, meaningful, and educational (Echols, 2007). This master thesis explores the concept of Water Sensitive Urban Design and its application in the cities of Copenhagen, Malmö and Rotterdam. The case study of PHVision in Heidelberg, Germany, is analysed from the concept of WSUD. Design improvements are suggested stemming from the analysed European examples and the theoretical background

    Importancia diferencial de los componentes fundamentales de la esquizotipia: un metaanálisis

    Get PDF
    La esquizotipia puede entenderse como un trastorno incluido en el espectro de la esquizofrenia o como rasgo psicométrico que comprende 3 dimensiones: cognitivo-perceptual, interpersonal y desorganización cognitiva. La primera se relaciona con creencias extrañas y experiencias perceptuales inusuales; la segunda, con anhedonia y déficit en relaciones interpersonales, y la desorganización se identifica con pensamientos, conductas y lenguaje raros. Diferentes estudios han intentado esclarecer cuál de estas dimensiones es el componente esencial del constructo. Para dar respuesta a esta cuestión se llevó a cabo un metaanálisis en el que se realizó una revisión sistemática de las principales bases de datos que comparan las dimensiones de esquizotipia asociadas con diferentes áreas temáticas: composición factorial, síntomas clínicos y marcadores de vulnerabilidad. A partir de 300 artículos encontrados, se seleccionaron 27 estudios. Los resultados indicaron que la dimensión interpersonal parece estar más relacionada con la sintomatología clínica, mientras que la dimensión cognitivo-perceptual predomina en la investigación sobre marcadores de vulnerabilidad. La desorganización cognitiva contribuye a ambas temáticas. Se concluye que las dimensiones de esquizotipia tienen una importancia diferencial en función de las áreas de funcionamiento psicológico en estudio
    corecore