75 research outputs found

    The rewards of caring for grandchildren: Black Canadian grandmothers who are custodial parents, co-parents, and extensive babysitters

    Get PDF
    Grandparent caregiving is a growing phenomenon in both the United States and Canada. The burgeoning research on the topic has focused on custodial grandparents with an emphasis on negative aspects including poor physical and mental health outcomes for older adults. Less attention has been paid to the rewards of grandparent caregiving and to different intensities of caregiving provision. This grounded theory qualitative study of 16 Black Caribbean Canadian grandmothers sought to address this gap in the literature. We examined three types of grandparent caregivers: custodial grandparents (n=7), co-parent grandparents (n=5) and extensive babysitters (n=4). The average age of the children varied by caregiver modality: custodial grandmothers cared for slighter older children (mean age 10.4 years), followed by co-parent grandmothers (mean age of 8.1 years). Extensive babysitter grandmothers cared for younger children (mean age of 6.6 years). The three types of caregiving grandparents reported substantial similarities in their perceptions of the rewards of caregiving. Results reveal five main themes: (1) Grandmothers’ responsibilities and pride of care giving; (2) Grandmothers keeping the family close together and safe; (3) Mutual respect between grandmothers and grandchildren; (4) Caregiving provides grandmothers with a sense of purpose; and (5) Grandchildren are fun! Implications of these findings in light of Erikson’s concept of generativity, will be discussed

    Transesophageal echocardiogram: Accurate enough to make definitive clinical decisions related to endocarditis

    Get PDF
    A critical appraisal and clinical application of: Daniel WG, Mugge A, Martin RP, et al. Improvement in the diagnosis of abscesses associated with endocarditis by transesophageal echocardiography. N Engl J Med. 1991 Mar 21;324(12):795-800. doi: 10.1056/NEJM19910321324120

    Pharmacological evaluation of novel bioisosteres of an adamantanyl benzamide P2X7 receptor antagonist

    Get PDF
    Adamantanyl benzamide 1 was identified as a potent P2X7R antagonist but failed to progress further due to poor metabolic stability. We describe the synthesis and SAR of a series of bioisosteres of benzamide 1 to explore improvements in the pharmacological properties of this lead. Initial efforts investigated a series of heteroaromatic bioisosteres, which demonstrated improved physicochemical properties but reduced P2X7R antagonism. Installation of bioisosteric fluorine on the adamantane bridgeheads was well tolerated and led to a series of bioisosteres with improved physicochemical properties and metabolic stability. Trifluorinated benzamide 34 demonstrated optimal physicochemical parameters, superior metabolic stability (ten times longer than lead benzamide 1), and an improved physicokinetic profile and proved effective in the presence of several known P2X7R polymorphisms

    A P2RX7 single nucleotide polymorphism haplotype promotes exon 7 and 8 skipping and disrupts receptor function

    Get PDF
    P2X7 is an ATP-gated membrane ion channel that is expressed by multiple cell types. Brief exposure to ATP induces the opening of a nonselective cation channel; while repeated or prolonged exposure induces formation of a transmembrane pore. This process may be partially regulated by alternative splicing of full-length P2RX7A pre-mRNA, producing isoforms that delete or retain functional domains. Here, we report cloning and expression of a novel P2RX7 splice variant, P2RX7L, that is, characterized by skipping of exons 7 and 8. In HEK 293 cells, expression of P2RX7L produces a protein isoform, P2X7L, that forms a heteromer with P2X7A. A haplotype defined by six single nucleotide polymorphisms (SNPs) (rs208307, rs208306, rs36144485, rs208308, rs208309, and rs373655596) promotes allele-specific alternative splicing, increasing mRNA levels of P2RX7L and another isoform, P2RX7E, which in addition has a truncated C-terminus. Skipping of exons 7 and 8 is predicted to delete critical amino acids in the ATP-binding site. P2X7L-transfected HEK 293 cells have phagocytic but not channel, pore, or membrane-blebbing function, and double-transfected P2X7L and P2X7A cells have reduced pore function. Heteromeric receptor complexes of P2X7A and P2X7L are predicted to have reduced numbers of ATP-binding sites, which potentially alters receptor function compared to homomeric P2X7A complexes

    Small-Group Learning in an Upper-Level University Biology Class Enhances Academic Performance and Student Attitudes Toward Group Work

    Get PDF
    To improve science learning, science educators' teaching tools need to address two major criteria: teaching practice should mirror our current understanding of the learning process; and science teaching should reflect scientific practice. We designed a small-group learning (SGL) model for a fourth year university neurobiology course using these criteria and studied student achievement and attitude in five course sections encompassing the transition from individual work-based to SGL course design. All students completed daily quizzes/assignments involving analysis of scientific data and the development of scientific models. Students in individual work-based (Individualistic) sections usually worked independently on these assignments, whereas SGL students completed assignments in permanent groups of six. SGL students had significantly higher final exam grades than Individualistic students. The transition to the SGL model was marked by a notable increase in 10th percentile exam grade (Individualistic: 47.5%; Initial SGL: 60%; Refined SGL: 65%), suggesting SGL enhanced achievement among the least prepared students. We also studied student achievement on paired quizzes: quizzes were first completed individually and submitted, and then completed as a group and submitted. The group quiz grade was higher than the individual quiz grade of the highest achiever in each group over the term. All students – even term high achievers –could benefit from the SGL environment. Additionally, entrance and exit surveys demonstrated student attitudes toward SGL were more positive at the end of the Refined SGL course. We assert that SGL is uniquely-positioned to promote effective learning in the science classroom

    Probenecid Blocks Human P2X7 Receptor-Induced Dye Uptake via a Pannexin-1 Independent Mechanism

    Get PDF
    P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Paroxetine suppresses recombinant human P2X7 responses

    Get PDF
    P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine

    Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women

    Get PDF
    The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide polymorphisms (SNP; c.151+1G>T, c.946G>A, c.1096C>G, c.1513A>C and c.1729T>A) and one gain-of-function SNP (c.489C>T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine (LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506 post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar spine BMD was measured at baseline and at 6–7 year follow-up. P2RX7 genotyping was performed by homogeneous mass extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P=0.004, β=−0.12) and follow-up (P=0.002, β=−0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n=48) had nearly ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n=84; rate of loss=−0.94%/year and −0.11%/year, respectively, P=0.0005, unpaired t-test). This is the first report that describes association of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at greater risk of developing osteoporosis
    corecore