55 research outputs found

    The absence of phloem loading in willow leaves

    Full text link

    A Highly Sensitive, Quick and Simple Quantification Method for Nicotianamine and 2â€Č-Deoxymugineic Acid from Minimum Samples Using LC/ESI-TOF-MS Achieves Functional Analysis of These Components in Plants

    Get PDF
    A highly sensitive quantitative method for assaying nicotianamine (NA) and 2â€Č-deoxymugineic acid (DMA) using liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) was developed. The amino and hydroxyl groups of NA and DMA were derivatized using 9-fluorenylmethoxycarbonyl chloride. The amounts of NA and DMA in 10 Όl of xylem sap from rice cultivated under iron (Fe)-sufficient and Fe-deficient conditions were quantified without concentration. In Fe-sufficient plants, the concentrations of NA and DMA were almost equal to that of Fe. In Fe-deficient plants, the concentration of NA did not change significantly, whereas that of DMA increased markedly

    Phloem sap intricacy and interplay with aphid feeding

    Get PDF
    Aphididae feed upon the plant sieve elements (SE), where they ingest sugars, nitrogen compounds and other nutrients. For ingestion, aphid stylets penetrate SE, and because of the high hydrostatic pressure in SE, phloem sap exudes out into the stylets. Severing stylets to sample phloem exudates (i.e. stylectomy) has been used extensively for the study of phloem contents. Alternative sampling techniques are spontaneous exudation upon wounding that only works in a few plant species, and the popular EDTA-facilitated exudation technique. These approaches have allowed fundamental advances on the understanding of phloem sap composition and sieve tube physiology, which are surveyed in this review. A more complete picture of metabolites, ions, proteins and RNAs present in phloem sap is now available, which has provided large evidence for the phloem role as a signalling network in addition to its primary role in partitioning of photo-assimilates. Thus, phloem sap sampling methods can have remarkable applications to analyse plant nutrition, physiology and defence responses. Since aphid behaviour is suspected to be affected by phloem sap quality, attempts to manipulate phloem sap content were recently undertaken based on deregulation in mutant plants of genes controlling amino acid or sugar content of phloem sap. This opens up new strategies to control aphid settlement on a plant host

    Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle.

    Get PDF
    In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of ‘funnel plasmodesmata’. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as ‘batch unloading’. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots.KJO acknowledges the financial support of the BBSRC. We thank Ilya Belevich for preparing material for SBFSEM and Kirsten Knox and Andrea Paterlini for advice on tracer experiments. We thank Pawel Roszak for providing T2 seeds of psAPL::icals3m lines. We thank the Francheschi Microscopy and Imaging center for technical support. This work was supported by National Science Foundation grant IOS-1146500 (MK)

    Within-plant variation in concentrations of amino acids, sugar, and sinigrin in phloem sap of black mustard, Brassica nigra (L.) Koch (Cruciferae)

    Full text link
    Although within-plant variation in the nutrient and allelochemical composition of phloem sap has been invoked to explain patterns of host use by phloem-feeding insects, little is known about within-plant variation in phloem chemistry. Here I describe a new technique in which I use the green peach aphid, Myzus persicae Sulz., to investigate within-plant variation in the concentrations of chemicals in the phloem sap of black mustard, Brassica nigra (L.) Koch (Cruciferae). Relationships between the concentrations of chemicals in aphid diets and honeydew were established using honeydew from aphids fed on artificial diets with known concentrations of amino acids, sucrose, and sinigrin. These relationships were applied to honeydew from aphids fed on different aged leaves of black mustard to estimate the concentrations of the chemicals in phloem sap. Sinigrin concentration was estimated to be high (>10 mM) in phloem sap in young leaves, calling into question the prevailing opinion that phloem sap contains only low concentrations of allelochemicals. High concentrations may function as defenses against sap-feeding herbivores. Within-plant variation in phloem sap composition was high: (1) young leaves had high concentrations of nutrients (216 mM amino acids, 26% sugar) and sinigrin (>10 mM); (2) mature and presenescent leaves had lower concentrations of nutrients (77–83 mM amino acids, 19–20% sugar) and low concentrations of sinigrin (1–2 mM); and (3) senescing leaves had high concentrations of nutrients (199 mM amino acids, 25% sugar) and low concentrations of sinigrin (3 mM).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44893/1/10886_2005_Article_BF02027950.pd
    • 

    corecore