926 research outputs found

    Molecular constituents of neuronal AMPA receptors

    Get PDF
    Dynamic regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) underlies aspects of synaptic plasticity. Although numerous AMPAR-interacting proteins have been identified, their quantitative and relative contributions to native AMPAR complexes remain unclear. Here, we quantitated protein interactions with neuronal AMPARs by immunoprecipitation from brain extracts. We found that stargazin-like transmembrane AMPAR regulatory proteins (TARPs) copurified with neuronal AMPARs, but we found negligible binding to GRIP, PICK1, NSF, or SAP-97. To facilitate purification of neuronal AMPAR complexes, we generated a transgenic mouse expressing an epitope-tagged GluR2 subunit of AMPARs. Taking advantage of this powerful new tool, we isolated two populations of GluR2 containing AMPARs: an immature complex with the endoplasmic reticulum chaperone immunoglobulin-binding protein and a mature complex containing GluR1, TARPs, and PSD-95. These studies establish TARPs as the auxiliary components of neuronal AMPARs

    Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase

    Get PDF
    Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzymes that palmitoylate eNOS in vivo. Transfection of human embryonic kidney 293 cells with the complementary DNA (cDNA) for eNOS and 23 cDNA clones encoding the Asp-His-His-Cys motif (DHHC) palmitoyl transferase family members showed that five clones (2, 3, 7, 8, and 21) enhanced incorporation of [3H]-palmitate into eNOS. Human endothelial cells express all five of these enzymes, which colocalize with eNOS in the Golgi and plasma membrane and interact with eNOS. Importantly, inhibition of DHHC-21 palmitoyl transferase, but not DHHC-3, in human endothelial cells reduces eNOS palmitoylation, eNOS targeting, and stimulated NO production. Collectively, our data describe five new Golgi-targeted DHHC enzymes in human endothelial cells and suggest a regulatory role of DHHC-21 in governing eNOS localization and function

    Human cerebrospinal fluid monoclonal LGI1 autoantibodies increase neuronal excitability

    Get PDF
    OBJECTIVE: Leucine-rich glioma-inactivated 1 (LGI1) encephalitis is the second most common antibody-mediatedencephalopathy, but insight into the intrathecal B-cell autoimmune response, including clonal relationships, isotype dis-tribution, frequency, and pathogenic effects of single LGI1 antibodies, has remained limited. METHODS: We cloned, expressed, and tested antibodies from 90 antibody-secreting cells (ASCs) and B cells from thecerebrospinalfluid (CSF) of several patients with LGI1 encephalitis. RESULTS: Eighty-four percent of the ASCs and 21% of the memory B cells encoded LGI1-reactive antibodies, whereasreactivities to other brain epitopes were rare. All LGI1 antibodies were of IgG1, IgG2, or IgG4 isotype and had under-gone affinity maturation. Seven of the overall 26 LGI1 antibodies efficiently blocked the interaction of LGI1 with itsreceptor ADAM22 in vitro, and their mean LGI1 signal on mouse brain sections was weak compared to the remaining,non–ADAM22-competing antibodies. Nevertheless, both types of LGI1 antibodies increased the intrinsic cellular excit-ability and glutamatergic synaptic transmission of hippocampal CA3 neurons in slice cultures. Interpretation: Our data show that the patients’intrathecal B-cell autoimmune response is dominated by LGI1 anti-bodies and that LGI1 antibodies alone are sufficient to promote neuronal excitability, a basis of seizure generation.Fundamental differences in target specificity and antibody hypermutations compared to the CSF autoantibody reper-toire in N-methyl-D-aspartate receptor encephalitis underline the clinical concept that autoimmune encephalitides arevery distinct entities

    Formation of hydrogen-boron complexes in boron-doped silicon treated with a high concentration of hydrogen atoms

    Get PDF
    The formation of hydrogen (H) related complexes and their effect on boron (B) dopant were investigated in B-ion implanted and annealed silicon (Si) substrates treated with a high concentration of H. Isotope shifts by replacement of 10B with 11B were observed for some H-related Raman peaks, but not for other peaks. This shows proof of the formation of B-H complexes in which H directly bonds to B in Si. This is an experimental result concerning the formation of B-H complexes with H bonded primarily to B. Electrical resistivity measurements showed that the B acceptors are passivated via the formation of the observed B-H complexes, as well as the well-known passivation center in B-doped Si; namely, the H-B passivation center

    Phosphorus doping and hydrogen passivation of donors and defects in silicon nanowires synthesized by laser ablation

    Get PDF
    Phosphorus (P) doping was performed during the synthesis of silicon nanowires (SiNWs) by laser ablation. At least three types of signals were observed by electron spin resonance (ESR) at 4.2 K. Phosphorus doping into substitutional sites of crystalline Si in SiNWs was demonstrated by the detection of an ESR signal with a g value of 1.998, which corresponds to conduction electrons in crystalline Si, and by an energy-dispersive x-ray spectroscopy spectrum of the P Kalpha line. The ESR results also revealed the presence of defects. These defects were partially passivated by hydrogen and oxygen atoms

    Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95

    Get PDF
    Protein palmitoylation is the most common posttranslational lipid modification; its reversibility mediates protein shuttling between intracellular compartments. A large family of DHHC (Asp-His-His-Cys) proteins has emerged as protein palmitoyl acyltransferases (PATs). However, mechanisms that regulate these PATs in a physiological context remain unknown. In this study, we efficiently monitored the dynamic palmitate cycling on synaptic scaffold PSD-95. We found that blocking synaptic activity rapidly induces PSD-95 palmitoylation and mediates synaptic clustering of PSD-95 and associated AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors. A dendritically localized DHHC2 but not the Golgi-resident DHHC3 mediates this activity-sensitive palmitoylation. Upon activity blockade, DHHC2 translocates to the postsynaptic density to transduce this effect. These data demonstrate that individual DHHC members are differentially regulated and that dynamic recruitment of protein palmitoylation machinery enables compartmentalized regulation of protein trafficking in response to extracellular signals

    Transactivation of EGFR by LPS induces COX-2 expression in enterocytes

    Get PDF
    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC

    Neurotransmitter release regulated by a MALS–liprin-α presynaptic complex

    Get PDF
    Synapses are highly specialized intercellular junctions organized by adhesive and scaffolding molecules that align presynaptic vesicular release with postsynaptic neurotransmitter receptors. The MALS/Veli–CASK–Mint-1 complex of PDZ proteins occurs on both sides of the synapse and has the potential to link transsynaptic adhesion molecules to the cytoskeleton. In this study, we purified the MALS protein complex from brain and found liprin-α as a major component. Liprin proteins organize the presynaptic active zone and regulate neurotransmitter release. Fittingly, mutant mice lacking all three MALS isoforms died perinatally with difficulty breathing and impaired excitatory synaptic transmission. Excitatory postsynaptic currents were dramatically reduced in autaptic cultures from MALS triple knockout mice due to a presynaptic deficit in vesicle cycling. These findings are consistent with a model whereby the MALS–CASK–liprin-α complex recruits components of the synaptic release machinery to adhesive proteins of the active zone

    Renal defects associated with improper polarization of the CRB and DLG polarity complexes in MALS-3 knockout mice

    Get PDF
    Kidney development and physiology require polarization of epithelia that line renal tubules. Genetic studies show that polarization of invertebrate epithelia requires the crumbs, partition-defective-3, and discs large complexes. These evolutionarily conserved protein complexes occur in mammalian kidney; however, their role in renal development remains poorly defined. Here, we find that mice lacking the small PDZ protein mammalian LIN-7c (MALS-3) have hypomorphic, cystic, and fibrotic kidneys. Proteomic analysis defines MALS-3 as the only known core component of both the crumbs and discs large cell polarity complexes. MALS-3 mediates stable assembly of the crumbs tight junction complex and the discs large basolateral complex, and these complexes are disrupted in renal epithelia from MALS-3 knockout mice. Interestingly, MALS-3 controls apico-basal polarity preferentially in epithelia derived from metanephric mesenchyme, and defects in kidney architecture owe solely to MALS expression in these epithelia. These studies demonstrate that defects in epithelial cell polarization can cause cystic and fibrotic renal disease
    corecore