12 research outputs found

    Genetic linkage maps of Pinus koraiensis Sieb. et Zucc. based on AFLP markers

    Get PDF
    Genetic linkage maps provide essential information for molecular breeding. In this paper, the genetic linkage map of Pinus koraiensis was constructed using an F1 progeny of 88 individuals. One hundred and thirty (130) of molecular markers were mapped onto 6 linkage groups, 4 triples and 15 pairs at the linkage criteria LOD 4.0. Nine primer combinations were applied to map construction. The consensus map gained covers 620.909 cM, with an average marker spacing of 4.776 cM. The presented map provides crucial information for future genomic studies of P. koraiensis, in particular for QTL (quantitative trait loci) mapping of economically important breeding target traits.Keywords: Genetic mapping, Korean pine, linkage map, marker-aided selectionAfrican Journal of Biotechnology Vol. 9(35), pp. 5659-5664, 30 August, 201

    Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris

    Get PDF
    Background: Laccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris. Results: A D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 \ub1 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G. Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization

    Research progress in the relationship between EPIYA motif and <i>Helicobacter pylori</i> infection-associated gastropathy

    Get PDF
    Helicobacter pylori (Hp) is a major human pathogen. Hp infection will cause a series of gastrointestinal diseases, such as chronic gastritis, peptic ulcer and gastric cancer, etc. In recent years, with the increasing incidence of these diseases, their etiology and pathogenesis have attracted more and more attention from many scholars around the world. The pathogenic mechanism of cytotoxin-associated gene A (CagA), one of the virulence genes of Hp, has captivated widespread attention. EPIYA motif and Hp infection-associated gastropathy have become a hot topic. In this article, the relationship between EPIYA motif and gastropathy related to Hp infection was briefly reviewed

    Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris

    No full text
    Background: Laccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris. Results: A D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G. Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization

    Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis

    No full text
    Indigo carmine is a typical recalcitrant dye which is widely used in textile dyeing processes. Laccases are versatile oxidases showing strong ability to eliminate hazardous dyes from wastewater. However, most laccases require the participation of mediators for efficient decolorization of indigo carmine. Here we describe the improvement of the decolorization ability of a bacterial laccase through site-directed mutagenesis. A D501G variant of Bacillus amyloliquefaciens laccase was constructed and overexpressed in Escherichia coli. The laccase activity in the culture supernatant achieved 3374 U·L−1 for the mutant. Compared with the wild-type enzyme, the D501G exhibited better stability and catalytic efficiency. It could decolorize more than 92% of indigo carmine without additional mediators in 5 h at pH 9.0, which was 3.5 times higher than the wild-type laccase. Isatin sulfonic acid was confirmed to be the main product of indigo carmine degradation by UV-vis and LC-MS analyses

    Effects of Soil Microbes on Forest Recovery to Climax Community through the Regulation of Nitrogen Cycling

    No full text
    Microbes, as important regulators of ecosystem processes, play essential roles in ecosystem recovery after disturbances. However, it is not clear how soil microbial communities and functions change and affect forest recovery after clear-cutting. Here, we used metagenome sequencing to systematically analyse the differences in soil microbial community composition, functions, and nitrogen (N) cycling pathways between primary Korean pine forests (PF) and secondary broad-leaved forests (SF) formed after clear-cutting. Our results showed that the dominant phyla of the two forest types were consistent, but the relative abundance of some phyla was significantly different. Meanwhile, at the genus level, the fold-changes of rare genera were larger than the dominant and common genera. The genes related to microbial core metabolic functions, virulence factors, stress response, and defence were significantly enriched in SF. Additionally, based on the relative abundance of functional genes, a schema was proposed to analyse the differences in the whole N cycling processes between the two forest types. In PF, the stronger ammoniation and dissimilatory nitrate reduction (DNRA) and the weaker nitrification provided a genetic explanation for PF dominated by ammonium (NH4+) rather than nitrate (NO3−). In SF, the weaker DNRA, the stronger nitrification and denitrification, the higher soil available phosphorus (AP), and the lower nitrogen to phosphorus ratio (N/P) comprehensively suggested that SF was faced with a greater degree of N limitation. These results offer insights into the potential relationship between soil microbes and forest recovery, and aid in implementing proper forestry management
    corecore