378 research outputs found

    The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology

    Get PDF
    The role of endomyocardial biopsy (EMB) in the diagnosis and treatment of adult and pediatric cardiovascular disease remains controversial, and the practice varies widely even among cardiovascular centers of excellence. A need for EMB exists because specific myocardial disorders that have unique prognoses and treatment are seldom diagnosed by noninvasive testing.1 Informed clinical decision making that weighs the risks of EMB against the incremental diagnostic, prognostic, and therapeutic value of the procedure is especially challenging for nonspecialists because the relevant published literature is usually cited according to specific cardiac diseases, which are only diagnosed after EM

    Monophasic synovial sarcoma of the pharynx: a case report

    Get PDF
    Synovial sarcomas are a rare form of soft tissue sarcomas. We present a case of a 62 year-old male presenting with a left thyroid lump initially though to be a thyroid adenoma but subsequently diagnosed as a monophasic synovial sarcoma of the pharynx. We discuss the diagnosis and treatment of this case

    Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases

    Get PDF
    Over 10 million doses of COVID-19 vaccines based on RNA technology, viral vectors, recombinant protein, and inactivated virus have been administered worldwide. Although generally very safe, post-vaccine myocarditis can result from adaptive humoral and cellular, cardiac-specific inflammation within days and weeks of vaccination. Rates of vaccine-associated myocarditis vary by age and sex with the highest rates in males between 12 and 39 years. The clinical course is generally mild with rare cases of left ventricular dysfunction, heart failure and arrhythmias. Mild cases are likely underdiagnosed as cardiac magnetic resonance imaging (CMR) is not commonly performed even in suspected cases and not at all in asymptomatic and mildly symptomatic patients. Hospitalization of symptomatic patients with electrocardiographic changes and increased plasma troponin levels is considered necessary in the acute phase to monitor for arrhythmias and potential decline in left ventricular function. In addition to evaluation for symptoms, electrocardiographic changes and elevated troponin levels, CMR is the best non-invasive diagnostic tool with endomyocardial biopsy being restricted to severe cases with heart failure and/or arrhythmias. The management beyond. guideline-directed treatment of heart failure and arrhythmias includes non-specific measures to control pain. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs, and corticosteroids have been used in more severe cases, with only anecdotal evidence for their effectiveness. In all age groups studied, the overall risks of SARS-CoV-2 infection-related hospitalization and death are hugely greater than the risks from post-vaccine myocarditis. This consensus statement serves as a practical resource for physicians in their clinical practice, to understand, diagnose, and manage affected patients. Furthermore, it is intended to stimulate research in this area

    Tailoring Optical Complex Field with Spiral Blade Plasmonic Vortex Lens

    Get PDF
    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields

    Surface Roughness of Commercial Composites after Different Polishing Protocols: An Analysis with Atomic Force Microscopy

    Get PDF
    Polishing may increase the surface roughness of composites, with a possible effect on bacterial growth and material properties. This preliminary in vitro study evaluates the effect of three different polishing systems (PoGo polishers, Enhance, Venus Supra) on six direct resin composites (Gradia Direct, Venus, Venus Diamond, Enamel Plus HFO, Tetric Evoceram, Filtek Supreme XT)

    Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart

    Get PDF
    In the diabetic heart, chronic activation of the PPARα pathway drives excessive fatty acid (FA) oxidation, lipid accumulation, reduced glucose utilization, and cardiomyopathy. The related nuclear receptor, PPARβ/δ, is also highly expressed in the heart, yet its function has not been fully delineated. To address its role in myocardial metabolism, we generated transgenic mice with cardiac-specific expression of PPARβ/δ, driven by the myosin heavy chain (MHC-PPARβ/δ mice). In striking contrast to MHC-PPARα mice, MHC-PPARβ/δ mice had increased myocardial glucose utilization, did not accumulate myocardial lipid, and had normal cardiac function. Consistent with these observed metabolic phenotypes, we found that expression of genes involved in cellular FA transport were activated by PPARα but not by PPARβ/δ. Conversely, cardiac glucose transport and glycolytic genes were activated in MHC-PPARβ/δ mice, but repressed in MHC-PPARα mice. In reporter assays, we showed that PPARβ/δ and PPARα exerted differential transcriptional control of the GLUT4 promoter, which may explain the observed isotype-specific effects on glucose uptake. Furthermore, myocardial injury due to ischemia/reperfusion injury was significantly reduced in the MHC-PPARβ/δ mice compared with control or MHC-PPARα mice, consistent with an increased capacity for myocardial glucose utilization. These results demonstrate that PPARα and PPARβ/δ drive distinct cardiac metabolic regulatory programs and identify PPARβ/δ as a potential target for metabolic modulation therapy aimed at cardiac dysfunction caused by diabetes and ischemia

    Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends

    Get PDF
    In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies

    Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the limited RNA amounts from endomyocardial biopsies (EMBs) and low expression levels of certain genes, gene expression analyses by conventional real-time RT-PCR are restrained in EMBs. We applied two preamplification techniques, the TaqMan<sup>® </sup>PreAmp Master Mix (T-PreAmp) and a multiplex preamplification following a sequence specific reverse transcription (SSRT-PreAmp).</p> <p>Results</p> <p>T-PreAmp encompassing 92 gene assays with 14 cycles resulted in a mean improvement of 7.24 ± 0.33 Ct values. The coefficients for inter- (1.89 ± 0.48%) and intra-assay variation (0.85 ± 0.45%) were low for all gene assays tested (<4%). The PreAmp uniformity values related to the reference gene CDKN1B for 91 of the investigated gene assays (except for CD56) were -0.38 ± 0.33, without significant differences between self-designed and ABI inventoried Taqman<sup>® </sup>gene assays. Only two of the tested Taqman<sup>® </sup>ABI inventoried gene assays (HPRT-ABI and CD56) did not maintain PreAmp uniformity levels between -1.5 and +1.5. In comparison, the SSRT-PreAmp tested on 8 self-designed gene assays yielded higher Ct improvement (9.76 ± 2.45), however was not as robust regarding the maintenance of PreAmp uniformity related to HPRT-CCM (-3.29 ± 2.40; p < 0.0001), and demonstrated comparable intra-assay CVs (1.47 ± 0.74), albeit higher inter-assay CVs (5.38 ± 2.06; p = 0.01). Comparing EMBs from each 10 patients with dilated cardiomyopathy (DCM) and inflammatory cardiomyopathy (DCMi), T-PreAmp real-time RT-PCR analyses revealed differential regulation regarding 27 (30%) of the investigated 90 genes related to both HPRT-CCM and CDKN1B. Ct values of HPRT and CDKN1B did not differ in equal RNA amounts from explanted DCM and donor hearts.</p> <p>Conclusion</p> <p>In comparison to the SSRT-PreAmp, T-PreAmp enables a relatively simple workflow, and results in a robust PreAmp of multiple target genes (at least 92 gene assays as tested here) by a mean Ct improvement around 7 cycles, and in a lower inter-assay variance in RNA derived from EMBs. Preliminary analyses comparing EMBs from DCM and DCMi patients, revealing differential regulation regarding 30% of the investigated genes, confirm that T-PreAmp is a suitable tool to perform gene expression analyses in EMBs, expanding gene expression investigations with the limited RNA/cDNA amounts derived from EMBs. CDKN1B, in addition to its function as a reference gene for the calculation of PreAmp uniformity, might serve as a suitable housekeeping gene for real-time RT-PCR analyses of myocardial tissues.</p
    • …
    corecore