202 research outputs found

    Uranium Budget and Leaching in Swiss Agricultural Systems

    Get PDF
    Many mineral P fertilizers contain toxic uranium (U) in high concentrations. When the fertilizers are applied to agricultural sites, U can either accumulate in the soil or leach to ground and surface waters. We analyzed the U fluxes at three arable and three grassland agricultural sites on the Swiss plateau for 1 year. We calculated all inputs and outputs to the soils, modeled the speciation of U in the soil solution and investigated the possible leaching of U along preferential flow paths. We found that all sites showed positive U budgets (+0.9–6.6 g ha−1^{-1} y−1^{-1}), indicating an accumulation of U. However, the accumulation of U was low and a doubling of U concentration in the surface soil would need 850–2,660 years assuming today’s U fluxes. Mineral P fertilizers were the quantitatively most important input, followed by manure application and mineral weathering (only important in the soils developed on limestone). While at sites with slightly acidic pH only little U (<0.01 ÎŒg L−1^{-1}) was leached, the U leaching increased at neutral pH values, because of the formation of carbonato-U complexes. In all soil solutions, the U concentrations (≀0.8 ÎŒg L−1^{-1}) were below legal threshold values and comparable to local drinking and surface waters. We found no indication for enhanced U leaching along preferential flow paths

    Nitrogen balances in farmers fields under alternative uses of a cover crop legume: a case study from Nicaragua

    Get PDF
    Canavalia brasiliensis (canavalia), a drought tolerant legume, was introduced into the smallholder traditional crop-livestock production system of the Nicaraguan hillsides as green manure to improve soil fertility or as forage during the dry season for improving milk production. Since nitrogen (N) is considered the most limiting nutrient for agricultural production in the target area, the objective of this study was to quantify the soil surface N budgets at plot level in farmers fields over two cropping years for the traditional maize/bean rotation and the alternative maize/canavalia rotation. Mineral fertilizer N, seed N and symbiotically fixed N were summed up as N input to the system. Symbiotic N2 fixation was assessed using the 15N natural abundance method. Nitrogen output was quantified as N export via harvested products. Canavalia derived in average 69% of its N from the atmosphere. The amount of N fixed per hectare varied highly according to the biomass production, which ranged from 0 to 5,700kgha−1. When used as green manure, canavalia increased the N balance of the maize/canavalia rotation but had no effect on the N uptake of the following maize crop. When used as forage, it bears the risk of a soil N depletion up to 41kgNha−1 unless N would be recycled to the plot by animal manure. Without N mineral fertilizer application, the N budget remains negative even if canavalia was used as green manure. Therefore, the replenishment of soil N stocks by using canavalia may need a few years, during which the application of mineral N fertilizer needs to be maintained to sustain agricultural productio

    Tracing the fate of phosphorus fertilizer derived cadmium in soil-fertilizer-wheat systems using enriched stable isotope labeling

    Get PDF
    Applying mineral phosphorus (P) fertilizers introduces a considerable input of the toxic heavy metal cadmium (Cd) into arable soils. This study investigates the fate of P fertilizer derived Cd (Cddff) in soil-wheat systems using a novel combination of enriched stable Cd isotope mass balances, sequential extractions, and Bayesian isotope mixing models. We applied an enriched 111Cd labeled mineral P fertilizer to arable soils from two long-term field trials with distinct soil properties (a strongly acidic pH and a neutral pH) and distinct past mineral P fertilizer application rates. We then cultivated wheat in a pot trial on these two soils. In the neutral soil, Cd concentrations in the soil and the wheat increased with increasing past mineral P fertilizer application rates. This was not the case in the strongly acidic soil. Less than 2.3% of freshly applied Cddff was taken up by the whole wheat plant. Most of the Cddff remained in the soil and was predominantly (>95% of freshly applied Cddff) partitioned into the easily mobilizable acetic acid soluble fraction (F1) and the potentially mobile reducible fraction (F2). Soil pH was the determining factor for the partitioning of Cddff into F1, as revealed through a recovery of about 40% of freshly applied Cddff in F1 in the neutral pH soil compared with about 60% in the strongly acidic soil. Isotope mixing models showed that F1 was the predominant source of Cd for wheat on both soils and that it contributed to over 80% of the Cd that was taken up by wheat. By tracing the fate of Cddff in entire soil-plant systems using different isotope source tracing approaches, we show that the majority of Cddff remains mobilizable and is potentially plant available in the subsequent crop cycle

    Nitrogen dynamics after slurry application as affected by anaerobic digestion, biochar and a nitrification inhibitor

    Get PDF
    Animal manures are valuable multi-nutrient fertilizers, but their short-term nitrogen (N) use efficiency (NUE) by plants is low, bearing the potential of harmful N losses to the environment, such as nitrate ( ) leaching. To develop strategies to increase the NUE of cattle slurry, a comprehensive understanding of slurry N dynamics in the soil–plant system is needed. In a 57-day microcosm experiment in the greenhouse, we assessed the effect of different slurry treatments on slurry N turnover in the soil and its uptake by ryegrass (Lolium multiflorum var. Westerwoldicum). Employing a two-factorial design, 15N cattle slurry (SLU), 15N anaerobically digested cattle slurry (SLA), and 15N anaerobically digested cattle slurry plus biochar (SLA+) were combined with and without the nitrification inhibitor 3,4-dimethyl-1H-pyrazole monophosphate (DMPP). As references, a mineral fertilizer (MIN) and an unfertilised treatment (N0) were included. The 15N recovery, hence NUE, in plant biomass was higher for SLA than for SLU, while recovery in soil at 55 days after set-up showed an opposite trend, with over 45% of N from SLU still being recovered in soil. DMPP and biochar only marginally affected NUE and fertilizer N recovery in soil. Although 15N recovery in soil was highest for SLU, residual N leaching from SLU was low (<1% of added N). We attribute this to the limited presence of slurry N in mineral forms at this point of time, with the majority being stored in the non-microbial organic soil N pool. Leaching of residual N from MIN was significantly higher for MIN than for SLU, while SLA and SLA+ ranged in between. Overall, anaerobic digestion appeared suitable for increasing NUE of cattle slurry, but further investigations under field conditions are necessary in order to assess its potential to reduce nitrate leaching in the long-term

    Farm-scale tradeoffs between legume use as forage versus green manure: the case of Canavalia Brasiliensis

    Get PDF
    This is an Author’s Accepted Manuscript of an article published in Agroecology and Sustainable Food Systems, 2014, available online: http://www.tandfonline.com/ http://dx.doi.org/10.1080/21683565.2013.82866

    Rock geochemistry induces stress and starvation responses in the bacterial proteome

    Get PDF
    Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label-free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium- and iron-limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock-dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments

    Uranium Budget and Leaching in Swiss Agricultural Systems

    Get PDF
    Many mineral P fertilizers contain toxic uranium (U) in high concentrations. When the fertilizers are applied to agricultural sites, U can either accumulate in the soil or leach to ground and surface waters. We analyzed the U fluxes at three arable and three grassland agricultural sites on the Swiss plateau for 1 year. We calculated all inputs and outputs to the soils, modeled the speciation of U in the soil solution and investigated the possible leaching of U along preferential flow paths. We found that all sites showed positive U budgets (+0.9–6.6 g ha⁻Âč y⁻Âč), indicating an accumulation of U. However, the accumulation of U was low and a doubling of U concentration in the surface soil would need 850–2,660 years assuming today’s U fluxes. Mineral P fertilizers were the quantitatively most important input, followed by manure application and mineral weathering (only important in the soils developed on limestone). While at sites with slightly acidic pH only little U (<0.01 ”g L⁻Âč) was leached, the U leaching increased at neutral pH values, because of the formation of carbonato-U complexes. In all soil solutions, the U concentrations (≀0.8 ”g L⁻Âč) were below legal threshold values and comparable to local drinking and surface waters. We found no indication for enhanced U leaching along preferential flow paths

    Baseline Inflammatory Status Reveals Dichotomic Immune Mechanisms Involved In Primary-Progressive Multiple Sclerosis Pathology

    Full text link
    To ascertain the role of inflammation in the response to ocrelizumab in primary-progressive multiple sclerosis (PPMS).Multicenter prospective study including 69 patients with PPMS who initiated ocrelizumab treatment, classified according to baseline presence [Gd+, n=16] or absence [Gd-, n=53] of gadolinium-enhancing lesions in brain MRI. Ten Gd+ (62.5%) and 41 Gd- patients (77.4%) showed non-evidence of disease activity (NEDA) defined as no disability progression or new MRI lesions after 1 year of treatment. Blood immune cell subsets were characterized by flow cytometry, serum immunoglobulins by nephelometry, and serum neurofilament light-chains (sNfL) by SIMOA. Statistical analyses were corrected with the Bonferroni formula.More than 60% of patients reached NEDA after a year of treatment, regardless of their baseline characteristics. In Gd+ patients, it associated with a low repopulation rate of inflammatory B cells accompanied by a reduction of sNfL values 6 months after their first ocrelizumab dose. Patients in Gd- group also had low B cell numbers and sNfL values 6 months after initiating treatment, independent of their treatment response. In these patients, NEDA status was associated with a tolerogenic remodeling of the T and innate immune cell compartments, and with a clear increase of serum IgA levels.Baseline inflammation influences which immunological pathways predominate in patients with PPMS. Inflammatory B cells played a pivotal role in the Gd+ group and inflammatory T and innate immune cells in Gd- patients. B cell depletion can modulate both mechanisms.Copyright © 2022 FernĂĄndez-Velasco, Monreal, Kuhle, Meca-Lallana, Meca-Lallana, Izquierdo, Oreja-Guevara, GascĂłn-GimĂ©nez, Sainz de la Maza, Walo-Delgado, Lapuente-Suanzes, Maceski, RodrĂ­guez-MartĂ­n, RoldĂĄn, Villarrubia, Saiz, Blanco, Diaz-PĂ©rez, Valero-LĂłpez, Diaz-Diaz, Aladro, Brieva, ĂĂ±iguez, GonzĂĄlez-SuĂĄrez, RodrĂ­guez de Antonio, GarcĂ­a-DomĂ­nguez, Sabin, Llufriu, Masjuan, Costa-Frossard and Villar

    Genetic variation for tuber mineral concentrations in accessions of the Commonwealth Potato Collection

    Get PDF
    The variation in tuber mineral concentrations amongst accessions of wild tuber-bearing Solanum species in the Commonwealth Potato Collection (CPC) was evaluated under greenhouse conditions. Selected CPC accessions, representing the eco-geographical distribution of wild potatoes, were grown to maturity in peat-based compost under controlled conditions. Tubers from five plants of each accession were harvested, bulked and their mineral composition analysed. Among the germplasm investigated, there was a greater range in tuber concentrations of some elements of nutritional significance to both plants and animals, such as (Ca, Fe and Zn; 6.7, 3.6, and 4.5-fold respectively) than others, such as (K, P and S; all <3-fold). Significant positive correlations were found between mean altitude of the species' range and tuber P, K, Cu and Mg concentrations. The amount of diversity observed in the CPC collection indicates the existence of wide differences in tuber mineral accumulation among different potato accessions. This might be useful in breeding for nutritional improvement of potato tubers
    • 

    corecore