47 research outputs found

    Optimization of density fitting auxiliary Slater-type basis functions for time-dependent density functional theory

    Get PDF
    A new set of auxiliary basis function suitable to fit the induced electron density is presented. Such set has been optimized in order to furnish accurate absorption spectra using the complex polarizability algorithm of time-dependent density functional theory (TDDFT). An automatic procedure has been set up, able, thanks to the definition of suitable descriptors, to evaluate the resemblance of the auxiliary basis-dependent calculated spectra with respect to a reference. In this way, it has been possible to reduce the size of the basis set maximizing the basis set accuracy. Thanks to the choice to employ a collection of molecules for each element, such basis has proven transferable to molecules outside the collection. The final sets are therefore much more accurate and smaller than the previously optimized ones and have been already included in the database of the last release of the AMS suite of programs. The availability of the present new set will allow to improve drastically the applicability range of the polTDDFT method with higher accuracy and less computational effort

    A new time dependent density functional algorithm for large systems and plasmons in metal clusters

    Get PDF
    A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The method has been applied to very different systems in nature and size (from H2 to [Au147] 12). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemente

    Accurate Vertical Excitation Energies of BODIPY/Aza-BODIPY Derivatives from Excited-State Mean-Field Calculations

    Get PDF
    We report a benchmark study of vertical excitation energies and oscillator strengths for the HOMO -> LUMO transitions of 17 boron-dipyrromethene (BODIPY) structures, showing a large variety of ring sizes and substituents. Results obtained at the time-dependent density functional theory (TDDFT) and at the delta-self-consistent-field (Delta SCF) by using 13 different exchange correlation kernels (within LDA, GGA, hybrid, and range-separated approximations) are benchmarked against the experimental excitation energies when available. It is found that the time-independent Delta SCF DFT method, when used in combination with hybrid PBE0 and B3LYP functionals, largely outperforms TDDFT and can be quite competitive, in terms of accuracy, with computationally more costly wave function based methods such as CC2 and CASPT2

    A new time-dependent density-functional method for molecular plasmonics: Formalism, implementation, and the Au144(SH)60 case study

    Get PDF
    We describe the implementation and application of a recently developed time-dependent density-functional theory (TDDFT) algorithm based on the complex dynamical polarizability to calculate the photoabsorption spectrum of large metal clusters, with specific attention to the field of molecular plasmonics. The linear response TDDFT equations are solved in the space of the density fitting functions, so the problem is recast as an inhomogeneous system of linear equations whose resolution needs a numerical effort comparable to that of a SCF procedure. The construction of the matrix representation of the dielectric susceptibility is very efficient and is based on the discretization of the excitation energy, so such matrix is easily obtained at each photon energy value as a linear combination of constant matrix and energy-dependent coefficients. The code is interfaced to the Amsterdam Density Functional (ADF) program and is fully parallelized with standard message passing interface. Finally, an illustrative application of the method to the photoabsorption of the Au144(SH)60 cluster is presented

    AgPd, AuPd, and AuPt nanoalloys with Ag- or Au-rich compositions: Modeling chemical ordering and optical properties

    Full text link
    Bimetallic nanoparticles have a myriad of technological applications, but investigations of their chemical and physical properties are precluded due to their structural complexity. Here, the chemical ordering and optical properties of AgPd, AuPd, and AuPt nanoparticles have been studied computationally. One of the main aims was to clarify whether layered ordered phases similar to L11 one observed in the core of AgPt nanoparticles [Pirart, J.; Nat. Commun. 2019, 10, 1982] are also stabilized in other nanoalloys of coinage metals with platinum-group metals, or the remarkable ordering is a peculiarity only of AgPt nanoparticles. Furthermore, the effects of different chemical orderings and compositions of the nanoalloys on their optical properties have been explored. Particles with a truncated octahedral geometry containing 201 and 405 atoms have been modeled. For each particle, the studied stoichiometries of the Ag- or Au-rich compositions, ca. 4:1 for 201-atomic particles and ca. 3:1 for 405-atomic particles, corresponded to the layered structures L11 and L10 inside the monatomic coinage-metal skins. Density functional theory (DFT) calculations combined with a recently developed topological (TOP) approach [Kozlov, S. M.; Chem. Sci. 2015, 6, 3868−3880] have been performed to study the chemical ordering of the particles, whose optical properties have been investigated using the time-dependent DFT method. The obtained results revealed that the remarkable ordering L11 of inner atoms can be noticeably favored only in small AgPt particles and much less in AgPd ones, whereas this L11 ordering in analogous Au-containing nanoalloys is significantly less stable compared to other calculated lowest-energy orderings. Optical properties were found to be more dependent on the composition (concentration of two metals) than on the chemical ordering. Both Pt and Pd elements promote the quenching of the plasmon

    Vibrationally resolved NEXAFS at C and N K-edges of pyridine, 2-fluoropyridine and 2,6-difluoropyridine: A combined experimental and theoretical assessment

    Get PDF
    In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach

    Study of the electronic structure of short chain oligothiophenes

    Full text link
    The electronic structure of short-chain thiophenes (thiophene, 2,2'-bithiophene and 2,2':5',2'-terthiophene) in the gas phase has been investigated by combining the outcomes of Near-Edge X-ray-Absorption Fine-Structure (NEXAFS) and X-ray Photoemission Spectroscopy (XPS) at the C K-edge with those of density functional theory (DFT) calculations. The calculated NEXAFS spectra provide a comprehensive description of the main experimental features and allow their attribution. The evolution of the C1s NEXAFS spectral features is analyzed as a function of the number of thiophene rings; a tendency to a stabilization for increasing chain length is found. The computation of the binding energy allows to assign the experimental XPS peaks to the different carbon sites on the basis of both the inductive effects generated by the presence of the S atom as well as of the differential aromaticity effects

    S 2p and P 2p Core Level Spectroscopy of PPT Ambipolar Material and Its Building Block Moieties

    Get PDF
    The near-edge X-ray absorption fine structure (NEXAFS and X-ray photoelectron (XP) spectra of gas-phase 2,8-bis-(diphenylphosphoryl)dibenzo[b,d]thiophene (PPT) and triphenylphosphine oxide (TPPO) have been measured at the S and P L-II,L-III-edge regions. The time-dependent density functional theory (TDDFT) based on the relativistic two-component zeroth-order regular approximation approach has been used to provide an assignment of the experimental spectra, giving the contribution of the spin-orbit splitting and of the molecular-field splitting to the sulfur and phosphor binding energies. Computed XP and NEXAFS spectra agree well with the experimental measurements. In going from dibenzothiophene and TPPO to PPT, the nature of the most intense S 2p and P 2p NEXAFS features are preserved; this trend suggests that the electronic and geometric behaviors of the S and P atoms in the two building block moieties are conserved in the more complex system of PPT. This work enables us to shed some light onto the structure of the P-O bond, a still highly debated topic in the chemical literature. Since the S 2p and P 2p NEXAFS intensities provide specific information on the higher-lying localized sigma*(C-S) and sigma*(P-O) virtual MOs, we have concluded that P 3d AOs are not involved in the formation of the P-O bond. Moreover, the results support the mechanism of negative hyperconjugation, by showing that transitions toward sigma*(P-O) states occur at lower energies with respect to those toward it pi*(P-O) states

    Carbon and Nitrogen K-Edge NEXAFS Spectra of Indole, 2,3-Dihydro-7-azaindole, and 3-Formylindole

    Get PDF
    The near-edge X-ray absorption fine structure (NEXAFS) spectra of indole, 2,3-dihydro-7-azaindole, and 3-formylindole in the gas phase have been measured at the carbon and nitrogen K-edges. The spectral features have been interpreted based on density functional theory (DFT) calculations within the transition potential (TP) scheme, which is accurate enough for a general description of the measured C 1s NEXAFS spectra as well as for the assignment of the most relevant features. For the nitrogen K-edge, the agreement between experimental data and theoretical spectra calculated with TP-DFT was not quite satisfactory. This discrepancy was mainly attributed to the many-body effects associated with the excitation of the core electron, which are better described using the time-dependent density functional theory (TDDFT) with the range-separated hybrid functional CAM-B3LYP. An assignment of the measured N 1s NEXAFS spectral features has been proposed together with a complete description of the observed resonances. Intense transitions from core levels to unoccupied antibonding π* states as well as several transitions with mixed-valence/Rydberg or pure Rydberg character have been observed in the C and N K-edge spectra of all investigated indoles

    Electronic properties of the boroxine–gold interface: evidence of ultra-fast charge delocalization

    Get PDF
    We performed a combined experimental and theoretical study of the assembly of phenylboronic acid on the Au(111) surface, which is found to lead to the formation of triphenylboroxines by spontaneous condensation of trimers of molecules. The interface between the boroxine group and the gold surface has been characterized in terms of its electronic properties, revealing the existence of an ultra-fast charge delocalization channel in the proximity of the oxygen atoms of the heterocyclic group. More specifically, the DFT calculations show the presence of an unoccupied electronic state localized on both the oxygen atoms of the adsorbed triphenylboroxine and the gold atoms of the topmost layer. By means of resonant Auger electron spectroscopy, we demonstrate that this interface state represents an ultra-fast charge delocalization channel. Boroxine groups are among the most widely adopted building blocks in the synthesis of covalent organic frameworks on surfaces. Our findings indicate that such systems, typically employed as templates for the growth of organic films, can also act as active interlayers that provide an efficient electronic transport channel bridging the inorganic substrate and organic overlayer
    corecore