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We describe the implementation and application of a recently

developed time-dependent density-functional theory (TDDFT)

algorithm based on the complex dynamical polarizability to

calculate the photoabsorption spectrum of large metal clus-

ters, with specific attention to the field of molecular plas-

monics. The linear response TDDFT equations are solved in the

space of the density fitting functions, so the problem is recast

as an inhomogeneous system of linear equations whose reso-

lution needs a numerical effort comparable to that of a SCF

procedure. The construction of the matrix representation of

the dielectric susceptibility is very efficient and is based on the

discretization of the excitation energy, so such matrix is easily

obtained at each photon energy value as a linear combination

of constant matrix and energy-dependent coefficients. The

code is interfaced to the Amsterdam Density Functional (ADF)

program and is fully parallelized with standard message pass-

ing interface. Finally, an illustrative application of the method

to the photoabsorption of the Au144(SH)60 cluster is presented. 

Introduction

Efficient and accurate prediction of photoabsorption spectra

for large systems is a fundamental goal of modern computa-

tional research. This goal is usually framed within the time-

dependent density-functional theory (TDDFT) formalism, which

currently represents a reasonable compromise between accu-

racy and computational effort. Indeed, TDDFT includes most of

the physics present in the photoabsorption phenomenon as

concerns electronic motion and is now implemented (in one

or other of its variants) in several publicly available quantum

chemistry codes. The associated computational cost of this

approach can, however, be still very demanding when the size

of the system grows larger and larger, and many efforts have

been undertaken in research groups to reduce it at a

minimum.

In quantum chemistry, an usual procedure is first to solve

the Kohn–Sham (KS) equations of density functional theory

(DFT) by expanding the molecular KS orbitals as linear combi-

nations of atomic functions, then to recast the TDDFT equa-

tions in a form involving the diagonalization of a matrix X
according to the density matrix formulation of Casida.[1] There-

fore, the TDDFT problem is reduced to the extraction of the

lowest eigenvalues and eigenvectors of X, a matrix whose

dimension is the product of the number of occupied and vir-

tual orbitals (Nocc 3 Nvirt). The dimension of this matrix thus

becomes huge for large systems. Such an approach has been

implemented in many codes, such as, for example, Amsterdam

density functional (ADF),[2–34] and can be made efficient by

taking advantages of: (a) the point group molecular symmetry,

(b) the Davidson diagonalization iterative algorithm which is

well suited for large matrices, (c) electron density fitting tech-

niques through the use of auxiliary basis functions, and finally

(d) massive parallelization. This scheme can be computationally

feasible on systems containing up to hundreds of atoms, pro-

vided one is interested only in the lowest part of the absorp-

tion spectrum. However, due to the intrinsic limitation of the

Davidson algorithm, which becomes numerically unstable

when too many eigenvalues are requested, the higher-energy

part of the spectrum of large molecules is basically inaccessi-

ble. This situation is encountered for example in the calcula-

tion of the photoabsorption spectra of metal clusters which

exhibit plasmonic behavior, since the clusters are quite large

and the plasmons lie at moderately high energy, so that the

number of eigenvalues requested is too high to be practicable

using the Davidson algorithm.

To avoid the diagonalization bottleneck, recently a new

TDDFT algorithm has been proposed[5] which extracts the

spectrum from the calculation of the complex dynamical polar-

izability. In this approach, the TDDFT equations are projected

onto the density fitting auxiliary basis set and therefore the

associated numerical problem is recast into the resolution of a

nonhomogeneous linear system with a dimension much

smaller with respect to the Casida approach. The matrix
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dimension of such linear system is k 3 (Nocc 1 Nvirt) instead of

Nocc 3 Nvirt of the Casida X matrix, with the factor k typically

between 1 and 3/2. Moreover, in this new scheme the spec-

trum at each frequency is obtained as an independent calcula-

tion, which makes the algorithm easily parallelizable and

feasible essentially for all systems for which a DFT calculation

is affordable.

Before describing the new algorithm, which is the topic of

the present article, it is worth mentioning other recent alterna-

tive TDDFT implementation strategies, which are promising for

applications to large systems.

The first one is based on the explicit time-propagation tech-

nique. This scheme was introduced in the seminal work of

Yabana and Bertsch[6] and is now implemented usually over

real space grids, like in the OCTOPUS program,[7] which has

been recently applied to study the photoabsorption of large

biomolecules[8] and large metal clusters up to 147 atoms[9]

and 263 atoms.[10] Real-time TDDFT has been implemented in

atomic orbitals codes as well, see Ref. 11 for a recent review.

The second one consists in a superoperator formulation

(equivalent to the Sternheimer approach or to the Hylleraas

functional) of the TDDFT, which allows the calculation of the

dynamical polarizability by means of a very efficient Lanczos

method, implemented using plane waves basis set[12]; it has

been applied to systems like C60, C70, zinc tetraphenylpor-

phyrin, and chlorophyll-a.[13–15] The Lanczos method is quite

appealing for large systems since it furnishes the whole excita-

tion spectrum, at variance with Davidson diagonalization

which is limited to the lower part of the spectrum. A third,

very recent scheme has been developed by Grimme and con-

sists in a simplified Tamm Dancoff Approximation (TDA)[16]

and TDDFT,[17] while a linear-scaling TDDFT has been devel-

oped by Zuehlsdorff.[18] A very promising recent method for

large systems is the TDDFT time-propagation with transition

contribution map (TCM) by Hakkinen[19] which has been

employed to calculate the spectrum of clusters containing up

to 314 gold atoms protected by ligands. Very recently Nobu-

sada has developed a massively parallel implementation of

TDDFT based on real-time and real-space,[20] which allowed to

consider clusters containing up to 1414 gold atoms.[21] It is

worth noting that each of these algorithms has its different

pros and cons. In particular, the Casida algorithm suffers from

the already mentioned problem of extracting a large number

of eigenvalues, but it has the great advantage of allowing a

very detailed assignment of the spectral features in terms of

one-electron 1 hole – 1 particle (1h1p) excited configurations.

In contrast, the TDDFT algorithms based on time-evolution

allow the calculation of the absorption spectrum on a wide

energy range; however, they do not give information regard-

ing the nature of the transitions involved in the spectral fea-

ture. The only possibility is the inspection of the first-order

perturbed density whose nature is useful for a qualitative

description but the information gained is too limited to allow

a detailed assignment in terms of electronic transitions. Con-

versely, real-time TDDFT may manifest difficulties in presence

of weak interactions between local excited states, in this case

very long time are needed to manifest (as in the F€orster reso-

nance). At the moment, to the best of our knowledge, for the

moment the only method which does not suffer energy limita-

tion and is able to give a detailed assignment is the TDDFT

time-propagation with TCM by Hakkinen.[19]

Within already implemented linear response (LR) TDDFT

codes, it is worth mentioning also the subsystem formulation

of LR-TDDFT[22,23] which is a very promising new idea for

future applications on very large systems.

In addition, it should be considered that also the develop-

ment of highly parallel ab initio and DFT codes like

NWCHEM[24] is an alternative way to formulate new TDDFT

algorithms able to describe large systems. This way appears a

practical and promising one, thanks to the increased availabil-

ity of massively parallel supercomputers.

The article is organized as follows. In method and implemen-

tation sections, the Method and its Implementation are

described in detail. The Computational Details are reported in

computational details section, Application: the Au144(SH)60 clus-

ter section is devoted to the application of the present method

to study the photoabsorption of the Au144(SH)60 cluster, finally,

the conclusions are summarized in Conclusions section.

Method

The present formulation is based on calculation of the photo-

absorption spectrum r xð Þ point by point from the imaginary

part of the dynamical polarizability a xð Þ

r xð Þ5 4px
c

I a xð Þ½ � (1)

This expression is of practical interest when the polarizability

is calculated for complex frequency, that is, x5xr1ixi , where

the real part xr is the scanned photon frequency (energy) and

xi is the imaginary part which corresponds to a broadening of

the discrete lines and can be interpreted as a pragmatic inclu-

sion of the excited states finite lifetime.

Now, it will be shown that it is possible to calculate effi-

ciently the complex a xð Þ introducing some approximations.

First let us start with the definition:

azz xð Þ5
ð

q 1ð Þ
z x;�rð Þzd�r (2)

Where azz xð Þ is the zth diagonal term of the polarizability ten-

sor, q 1ð Þ
z x;�rð Þ stands for the Fourier component of a given fre-

quency of the first-order time-dependent induced density by

the external time-dependent electromagnetic field. For the cal-

culation of the spectrum, the isotropic part of the tensor is

actually extracted from the trace: a xð Þ5 1
3

P3
i51 aii xð Þ where

the index i runs on the three components x, y, and z.

For the TDDFT, the induced density can be calculated from

the KS dielectric susceptibility vKS x;�r ;�r 0ð Þ of a reference sys-

tem of noninteracting electrons under the effect of an effec-

tive perturbing potential Vz
SCF x;�rð Þ sum of the external

potential plus the Coulomb and XC response potential.

This is summarized by the following coupled linear

equations:
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q 1ð Þ
z x;�rð Þ5

ð
vKS x;�r ;�r 0ð ÞVz

SCF x;�r 0ð Þd�r 0 (3)

V z
SCF x;�rð Þ5V z

EXT x;�rð Þ1
ð

qð1Þz x;�r 0ð Þd�r 0

j�r2�r 0j 1
@VXC

@q
j
q0

q 1ð Þ
z x;�rð Þ (4)

In last expression, the adiabatic local density approximation

(ALDA)[25] has been employed (XC kernel local in time and

additionally also in space, VXC is the same for the Casida for-

mulation) and Vz
EXT x;�rð Þ corresponds in practice to the z

dipole component.

Now, rewrite expressions for the induced density and the

perturbing potential in operatorial form:

q 1ð Þ
z 5vKSVz

SCF (5)

V z
SCF5Vz

EXT1Kq 1ð Þ
z (6)

Where in expression (6) K stands for the sum of the Coulomb

and the XC kernels:

K �r;�r 0ð Þ5KC �r ;�r 0ð Þ1KXC �r ;�r 0ð Þ5 1

jr2r0j1d r2r0ð Þ @VXC

@q

���
q0

(7)

Due to the linearity of (5) and (6) it is possible to eliminate

Vz
SCF and to obtain an equation for q 1ð Þ

z which reads:

12vKSK½ �q 1ð Þ
z 5vKSV z

EXT (8)

Now, it is convenient to represent Eq. (8) over a basis set and

since the unknown term corresponds to the induced density, it is

natural to choose the auxiliary density fitting functions fl as basis

set. More precisely it is even better to choose such basis as a sub-

set of the fitting set, since the induced density will be affected

mainly by valence orbitals so all the functions needed to fit the

core density should be excluded without losing of accuracy. With

this representation q 1ð Þ
z x;�rð Þ5

PK
l fl �rð Þbl xð Þ, the following non-

homogeneous system of linear algebraic equations is obtained,

which written in matrix formulation reads:

S2M xð Þ½ �b5d (9)

Where S is the overlap matrix between fitting functions, b is

the unknown vector with the expansion coefficients bl xð Þ of

q 1ð Þ
z , d is the frequency-dependent vector corresponding to

the known nonhomogeneous term, whose components are:

dl5hfljvKS xð Þjzi (10)

and finally, the elements of the frequency-dependent matrix M

are:

Mlm5hfljvKS xð ÞK jfmi (11)

Now, let us analyse the efforts needed to build the frequency-

dependent M xð Þ matrix: apparently this is a prohibitive task

for a practical calculation, since it should be repeated for each

frequency. The original characteristic of the present new

method is the introduction of a simple approximation which

should enable the construction of M xð Þ as a linear combina-

tion of frequency-independent matrices Gk with frequency-

dependent coefficients sk xð Þ, with this expression:

M xð Þ5
X

k

sk xð ÞGk (12)

with this idea a set of matrices Gk
� �

is calculated and stored

once at the beginning, then the matrix M xð Þ is calculated very

rapidly at each photon energy x.

Now, let us justify the expression (12), starting with the

expression of the KS dielectric susceptibility:

vKS x;�r ;�r 0ð Þ5
XNocc

i

XNvirt

a

uið�rÞuað�rÞ
4eia

x22e2
ia

uið�r 0Þuað�r 0Þ

5
XNocc

i

XNvirt

a

Hiað�rÞkiaðxÞHiað�r 0Þ

(13)

where in (13) we have assumed real KS occupied ui and virtual

ua orbitals and eia5ea2ei are differences between virtual and

occupied KS eigenvalues. Now, consider carefully the right-

hand side of expression (13): the frequency dependence enters

only in the kia xð Þ factor, which is “almost” constant for all the

pairs of index i- and a- for which ea2ei is almost constant. This

happens when many eia are close together, that is when the

density of “zero order” excitation energies is high. This impor-

tant observation allows to profitably change the double sum

in expression (13).

In fact, let us consider the distribution of all the eia on the

excitation energy axis, like in the next Figure 1, and define an

energy grid over this axis, starting from the minimum eia

which corresponds to eLUMO2eHOMO. The energy grid consists

of P 1 1 knots Ekf gk51;...;P11 and P intervals Ik .

Now, it is possible to change the double sum of previous

Eq. (13) as follows:

vKS x;�r ;�r 0ð Þ5
XP

k51

X
eia2Ik

Hia �rð Þkia xð ÞHia �r 0ð Þ (14)

the advantage of this new double sum is that, if the energy

knots are dense enough, the values of eia within each interval

can be considered, with good approximation, almost constant

and equal to the average �E i5
Ei1Ei11

2 : this allows to bring the

kia xð Þ factor outside the inner sum:

vKS x;�r ;�r 0ð Þ5
XP

k51

4�E k

x22�E
2
k

X
eia2Ik

Hia �rð ÞHia �r 0ð Þ (15)

so in expression (15) the frequency-dependent dielectric sus-

ceptibility is a linear combination of frequency-independent

objects (the inner sum) while only the coefficients are fre-

quency dependent. Moreover, if one is interested in the lowest

part of the spectrum as usually it happens, the sum in (15)

can be safely truncated at a maximum energy cut-off, which

can be chosen checking the convergence of the results with

respect to such energy cut-off.
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This resummation is the central idea of the present algo-

rithm. Now, we will use this approach to build the matrix

M xð Þ. From Eq. (11) and using expression (15) we get:

Mlm5
XP

k51

sk xð Þ
X
eia2Ik

hfljHia �rð ÞihHia �r 0ð ÞjK jfmi5
XP

k51

sk xð ÞGk
lm (16)

which now justifies previous expression (12), defines the

matrix Gk
lm and the coefficients:

sk xð Þ5 4�E k

x22�E
2
k

(17)

The construction of each Gk
lm matrix corresponds to a matrix–

matrix product:

Gk
lm5

X
eia2Ik

hfljHia �rð ÞihHia �r 0ð ÞjK jfmi5
X
eia2Ik

Ak
l;iaBk

ia;m (18)

Where the matrices A and B are:

Ak
l;ia5hfljHia �rð Þi (19)

Bk
ia;m5hHia �r 0ð ÞjK jfmi5hHia �r 0ð Þj 1

j�r 02�r 00j jfmi1hHia �r 0ð Þj @VXC

@q
jfmi

(20)

Finally, from the coefficients bl, solution of the Eq. (9), it is

possible calculate the dynamic polarizability:

azz xð Þ5
X

l

bl

ð
flzd�r (21)

Having obtained the components of the complex dynamic

polarizability, from expressions (2) and (1) the spectrum is

calculated.

Implementation

The new TDDFT algorithm is based on the resolution of the

system of linear algebraic Eq. (9), now the construction for the

all terms of Eq. (9) will be outlined.

This algorithm has been developed starting from the ADF

code,[2,3] in fact many integrals are already calculated by ADF,

so the ADF code has been only modified to save these inte-

grals on external files which will be read by an independent

program which will complete the calculations.

The ADF code calculates and saves the following analytic

integrals:

� The density fitting overlap matrix S:

Slm5hfljfmi (22)

� Density fitting Coulomb integrals matrix F:

Flm5hflj
1

j�r 02�r 00j jfmi (23)

� The integrals between two basis functions and one fitting

functions (pair fitting) with at least one common center:

hfljrsi (24)

� Dipole integrals between basis functions:

hrjzjsi (25)

ADF also saves the molecular orbitals eigenvalues and expan-

sion coefficients.

Finally, we had to implement in ADF also the calculation of

new integrals, between fitting functions and the ALDA

exchange correlation Kernel:

Zlm5hflj
@VXC

@q
jfmi (26)

The new program reads the files, selects the fitting functions,

builds all the needed matrices and solves the TDDFT Eq. (9),

calculates the spectrum and performs the analysis.

The new program first builds the energy grid, distributes

the difference of eigenvalues between occupied and virtual

molecular orbitals, and selects the fitting functions. Then, it

builds the matrix Ak :

Ak
l;ia5hfljuiuai5

Xbasis

rs

hfljrsicricsa (27)

The complete calculation of (27) would be far prohibitive, but

in ADF a very efficient “pair fitting” technique has been

already developed so the run of the basis indexes is not free

but limited such that at least one basis function lies on the

same center of the fit function. This step will be the most

expensive in the matrix construction. The similar procedure is

used to calculate the matrix Bk .

Bk
ia;m5huiuaj

1

j�r 02�r
00 j
jfmi1huiuaj

@VXC

@q
jfmi (28)

Now, consider the first term of Eq. (28), and exploiting the

resolution of the identity:

Figure 1. Distribution of the eigenvalue differences over the energy grid

for the efficient calculation of the dielectric susceptibility. See text for

details. Reprinted from Ref. [5] with the permission of AIP Publishing.
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huiuaj
1

j�r 02�r 00j jfmi5
X
cg

huiuajfciS21
cg hfgj

1

j�r 02�r 00j jfmi5 Ak
� �1

S21F
� �

ia;m

(29)

The second term of (28) can be calculated in a similar fashion:

huiuaj
@VXC

@q
jfmi5

X
cg

huiuajfciS21
cg hfgj

@VXC

@q
jfmi5 Ak

� �1
S21Z

� �
ia;m

(30)

Therefore, from (28)–(30) we get:

Bk
ia;m5 Ak

� �1
S21 F1Zð Þ

� �
ia;m

(31)

From previous expression (18) the matrix Gk is defined as

follows:

Gk5Ak Bk (32)

Actually Bk is not directly calculated, but rather matrices Dk

and L, whose definitions are:

Dk5Ak Ak
� �1

(33)

L5S21 F1Zð Þ (34)

We should observe that matrix L is independent from k index

(interval energy), so Gk is more conveniently defined in this way:

Gk5Dk L (35)

Also in this case the matrix Gk is not directly calculated,

because it is not computationally convenient, because matrix

M xð Þ is obtained as follows:

M xð Þ5
XP

k51

sk xð ÞGk5
XP

k51

sk xð ÞDk L5
XP

k51

sk xð ÞDk

!
L (36)

Where the coefficients sk correspond to:

sk xð Þ5 4�E k

x22�E
2
k

(37)

We have still to calculate the d vector of Eq. (9), that is, the

nonhomogeneous term, taking advantages of the previously

described technique, it is straightforward:

dl5hfljvKS xð Þjzi5
XP

k51

sk xð Þ
X
eia2Ik

Ak
l;iahuijzjuai (38)

The dipole moment integrals are calculated with linear combi-

nation from integrals (25):

huijzjuai5
Xbasis

rs

hrjzjsicricsa (39)

So vector d is easily calculated at each frequency as a linear

combination of frequency-independent vectors, accessible

from A matrix and conventional dipole matrix elements.

Finally, the complex dynamic polarizability components are

calculated:

azz xð Þ5
ð

q 1ð Þ
z x;�rð Þzd�r5

X
l

bl

ð
flzd�r5

X
l

blnl (40)

Where the vector b in (40) is the solution of Eq. (9) and the

elements of the vector n are integrals which are easily calcu-

lated analytically.

This step concludes the calculation of the dynamic polariz-

ability, and therefore of the spectrum, and furnished the first-

order TD density which can be used to analyze and rationalize

the results. However, our goal is to get also a more complete

analysis of the spectrum, namely in terms of linear combina-

tion of one-electron excited configurations or in terms of

TCMs.[19] To obtain this, it is convenient adopt the modified

Sternheimer approach formulation[26] of LR, which furnishes

the first-order perturbation of the KS orbitals:

H0
KS2ei2x

	 

u 1;2ð Þ

i 52VSCFui

H0
KS2ei1x

	 

uð1;1Þ

�

i 52VSCFui

(41)

from the perturbed orbitals the perturbed density is obtained:

q 1ð Þ52
Xocc

i

ui uð1;2Þi 1uð1;1Þi �
��

(42)

It is worth noting that, for convenience, the second inhomoge-

neous Eq. (41) is actually the complex conjugate with respect

to that reported in Ref. [26] for u 1;1ð Þ
i . Eqs. (41) and (42) in the

past were used to calculate self-consistently the VSCF (see the

theory chapter) in old TDDFT implementations,[27,28] but in

the present context they are useful to easily get the analysis

in terms of one-electron configurations once the TDDFT equa-

tions have been already solved. In fact if the perturbed orbitals

are expanded in terms of virtual KS orbitals the term in brack-

ets is diagonal:

ea2ei2x½ �ca2
i 52huajVSCFjuii

ea2ei1x½ �ca1�
i 52huajVSCFjuii

(43)

The polarizability is then expressed by:

azz xð Þ52
Xocc

i

Xvirt

a

huijzjuai ca1�

i 1ca2
i

� �
5
Xocc

i

Xvirt

a

huijzjuaiPa
i

(44)

where in Eq. (44), the density matrix (dipole amplitudes) Pa
i is intro-

duced. From Eq. (43) and using the definition of sk xð Þ, we obtain:

Pa
i 5sk xð ÞhuijVSCFjuai (45)

In practice from imaginary part of Eq. (44) the absorption

spectrum is obtained and therefore from imaginary part of

expression (45) the analysis in terms of one-electron excited

configurations and TCM is obtained.
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The dipole amplitudes are actually calculated as follows:

Pa
i 5sk xð Þ huijzjuai1

Xfit

ls

Ak
� �1

ia;lLlsbs

" #
(46)

We have decided to implement the new code in a separate

program independent by ADF to exploit more easily the par-

allelization, with the goal to obtain a code that is massively

parallel and easily portable on different architectures. For

this reasons, we have used standard message passing inter-

face, Basic Linear Algebra Communication Subprograms

(BLACS), and ScaLAPACK libraries. The general scheme of the

parallel calculation consists of four points: first is the initiali-

zation the BLACS grid; second, the distribution of the matrix

among the grid processes (typically cyclic block distribution);

third, the call to ScaLAPACK routines (matrix product, matri-

ces sum, etc.), fourth the harvest of the results. However,

the inclusion of the complete program within the ADF suite

is under consideration and will be available in a future

release of ADF.

The new program allows a simple choice of a subset of the

ADF fitting functions, to save computer time when some fit-

ting functions are not necessary for an accurate description of

the photoabsorption spectrum. The strategy to choose a prop-

erly reduced fitting subset consists to perform some prelimi-

nary TDDFT test calculations on simple systems (typically

biatomic molecules) increasing gradually the number of fit

functions. Typically this procedure converges rather rapidly,

giving calculated spectra that match better and better with

those obtained with a standard TDDFT calculation by ADF.

When a good match is obtained, the fitting subset of the cor-

responding atoms can be used for more complicated or larger

system.

Of course, the problem of properly choosing the density fit-

ting is not trivial at all, and in the present case it is hampered

by the Slater nature of the basis. In this respect, the choice of

Gaussian basis set would be more convenient, since it allows a

straightforward calculations of the three-center integrals

needed to fit the density and can benefit of very efficient

implementations.[29]

Equation (9) must be solved for each nonequivalent dipole

component, and the induced density q 1ð Þ must integrate to

zero over space due to orthogonality of occupied-virtual orbi-

tals. This condition is naturally satisfied when the dipole com-

ponent is not totally symmetric, conversely when the

symmetry is low and one or more dipole components are

totally symmetric, such constrain must be imposed. This is eas-

ily done by Lagrange multipliers technique after Eq. (9) is

solved. This can be formally realized introducing the constrain

and the multiplier k in (9):

S2M � � � �n

� . .
.

�

�n � � � 0

0
BB@

1
CCA

b

�

2k

0
BB@

1
CCA5

d

�

0

0
BB@

1
CCA (47)

Where �n is the vector of the normalization integrals of fitting

functions:

�n5

ð
fld�r (48)

In practice, the vector of expansion coefficients b of q 1ð Þ is cal-

culated in this way:

�b5�t2
h�nj�ti
h�nj�qi

�q (49)

Where �t is the solution of the linear Eq. (9) without any con-

strain, instead �q is defined:

�q5 S2Mð Þ21 �n (50)

While ADF employs the full symmetry in both SCF and TDDFT

parts, in the present method the symmetry is only partially

exploited: the density fitting basis functions are not symme-

trized; however, only the pairs of occupied uið Þ and virtual

uað Þ orbitals involved in allowed dipole selection rules are

actually considered.

We have implemented in the present method also the plas-

mon analysis according to Jacob et al.[30]: they suggested to

study the evolution of the TDDFT photoabsorption spectra by

changing a scaling factor 0 � k � 1 used to “turn on” the cou-

pling matrix K. In present implementation this can be easily

done multiplying the matrix L [Eq. (34)] by the scaling factor k.

Computational Details

The LB94[31] or the Perdew Burke Ernzerhof (PBE)[32] exchange-

correlation xc-functionals were employed to obtain the KS

orbitals and eigenvalues from the KS equations, while the

exchange-correlation kernel is approximated by ALDA[25] in

the TDDFT part taking the derivative of the VWN[33] LDA xc-

potential. The basis sets as well as the auxiliary density fitting

functions employed consist of slater-type orbitals included in

the ADF database. The new program allows a simple choice of

a subset of the ADF fitting functions, to save computer time

when some fitting functions are not necessary for an accurate

description of the photoabsorption spectrum. Such choice was

made with preliminary test calculations on the simple diatomic

molecules Au2, CS, and H2 for Au, S, and H, respectively. The

calculations have been performed at scalar relativistic level

with Zero-Order Regular Approximation (ZORA).[34]

The structure employed in the present work is reported in

Figure 2. It has been derived from that proposed in Ref. 35 by

replacing the methyl groups with H atoms, symmetrising the

obtained configuration in the D5 point group symmetry and

performing a DFT geometry optimization of the resulting con-

figuration employing the LDA Vxc potential, except for the Au

atoms whose coordinates were constructed to reproduce the

experimental structure factor.[36]

To give a quantitative idea about the computational efforts

and the efficiency of the spectrum calculation from the com-

plex polarizability, for the Au144(SH)60 cluster the SCF
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procedure employed 13 h using 16 cores on a Linux Infiniband

Cluster with 8-cores Intel Haswell 2.40 GHz processors, while

the resolution of the TDDFT inhomogeneous linear system

(dim 5 11628) employed only 172 seconds using 16 cores for

each energy point. Since about one hundred of energy points

are enough for a complete description of the spectrum, the

TDDFT linear system resolution is one half of the SCF effort. In

addition also matrix elements calculation time should be con-

sidered, so in general a TDDFT calculation will be comparable

to a gradient calculation in terms of computational cost. One

possible avenue for perspective development is to implement

more efficient integration algorithms in the frequency space.

Application: The Au144(SH)60 Cluster

Monolayer-protected clusters with formula Au144(SR)60 have

attracted a considerable interest in the literature, since the dis-

covery of the stable and robust Au144(SCH2CH2Ph)60 species.[35]

Such systems are in general quite appealing, since they can be

produced in purely monodispersed form, thus allowing to

combine the unique (e.g., plasmonic) response of metal clus-

ters with a precise chemical composition. The

Au144(SCH2CH2Ph)60 species in particular has been character-

ized by electrospray mass spectrometry, Scanning Tunnel Elec-

tron Microscopy,[37] and UV-vis absorption, albeit unfortunately

it has not yet been characterized by X-ray diffraction, so its

structure is not yet definitive although there are important

indications which allow to build reasonable models. The first

calculation of the optical spectrum of this cluster is reported

in Ref. [19], in which the atomistic structure was taken from a

previous work which assessed a widely used atomistic

model.[38] In Ref. [19] the calculated photoabsorption was dis-

cussed in terms of TCM, such analysis pointed out a plasmonic

behavior at 540 nm (2.3 eV) which was confined inside the

cluster, while going to larger size the plasmon localizes on the

surface. Another study[39] pointed out the richness of spectral

features of the experimental absorption of Au144(SC6H13)60,

modelled by the simpler Au144(SCH3)60 compound: a fair qualita-

tive agreement was obtained between theory and experiment.

A further systematic computational study[40] addressed the effect

of structure, symmetry, anisotropy, exchange-correlation func-

tional, R group, and charge state on the optical spectrum of

Au144(SR)60 species. Very recently new low temperature (25 K)

absorption experiments have been published as well.[41]

In the calculations here reported we use a Au144(SH)60

model structure which we derived in previous work.[36] We

start the present analysis on Au144(SH)60 with a comparison

between the spectra calculated at the TDDFT level with ADF

code and the complex polarizability algorithm (Fig. 3): a good

agreement is found between the two methods in the low

energy interval of the spectrum, despite the limitation of the

Davidson diagonalization of the Casida matrix employed by

ADF which prevents to predict the spectrum at higher energy.

In fact, the ADF spectrum reported in Figure 3 was obtained

by extracting the 600 lowest eigenvalues of the Casida matrix,

and it was not possible to go beyond this number without

introducing numerical instabilities. The absorption intensity in

the ADF spectrum is underestimated with respect to the com-

plex polarizability prediction: this effect has been observed

also in other systems and we attribute it to the missing back-

ground in the ADF results. In fact these systems are character-

ized by a strong absorption at higher energy (above 3 eV, see

Fig. 4), which is completely absent in ADF since the extracted

eigenvalues do not go beyond about 3 eV. On the contrary all

the contributions are considered in the complex polarizability

algorithm including the tails of the Lorentzian shape functions

connected with the strong absorption above 3 eV which can

influence and increase the background at small energy as well.

In Figure 4, we report the spectrum of Au144(SH)60 calcu-

lated at the TDDFT level with two different functionals (PBE

and LB94) and basis sets (DZ and TZP). Since the cluster

belongs to D5 point group symmetry, there are only two non-

equivalent electric dipole contributions: along Z (A2) and along

X or Y (E1), which have been separately reported in the figure.

The total absorption is obtained by summing the partial con-

tributions weighted according to their degeneracy, and this

Figure 2. Structure of the Au144(SH)60 cluster in D5 symmertry.

Figure 3. Calculated TDDFT photoabsorption spectra of Au144(SH)60. ADF

(Davidson diagonalization) results compared with present complex polariz-

ability algorithm.
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quantity is compared with the experimental data for

Au144(SC6H13)60 taken at 77 K.[39]

From Figure 4, it is apparent that the symmetry-equivalent x

and y components of the absorption spectrum closely resem-

ble the z-dipole component. This happens despite the fact

that the ligands affect the geometry of the cluster, lowering

the symmetry group from Ih to D5. The difference between the

components, also called anisotropy, is more pronounced at

higher energy, where ligands play a more important role, while

at low energy the spectrum is governed by the absorption of

the gold core, which retains largely its icosahedral symmetry.

In the low-energy region, the anisotropy is therefore less pro-

nounced but still plays an important role, confirming that

even these transitions are appreciably affected by the environ-

ment of the metal cluster.

Both xc-functionals with DZ basis set (upper and central

panels of Fig. 4) give only a qualitative agreement with the

experiment. In particular PBE displays a large upward jump

around 3eV which is not supported by the experimental data.

At lower energies both functionals display weak features

which seem to reproduce correctly the experiment. However,

the latter is characterized by a steep increase around 1.7 eV

which is much more broadened in the calculated spectra. The

oversimplification of the SC6H13 into the SH ligands and the

uncertainty in the cluster geometry prevent for a more

detailed analysis and comparison between theory and experi-

ment. However, it should be observed that the optical spec-

trum calculated using a TZP basis set and the LB94 Vxc

potential (lower panel of Fig. 4) is in much better agreement

with the experimental profile. Starting from the low-energy

region, the predicted spectrum shows two weak signals at 1.3

and 1.5 eV in very good agreement with the experiment (1.36

and 1.50 eV). It is worth noting that these features are the

result of the cluster anisotropy: in fact while the first peak at

1.3 eV is originated from the A2 dipole component (along Z)

the second one at 1.5 eV comes from the E1 component

(along X and Y). Interestingly such anisotropy effect is not

present for the calculations with DZ basis set, showing that

anisotropy is very sensitive to small details of the electronic

structure and polarizability, whose accurate reproduction

requires a larger basis set like TZP for a proper description.

Going to higher energy, the theoretical data display a jump

around 1.8 eV contributed mainly by the E1 component, which

corresponds to the above mentioned jump in experimental

data at 1.86 eV. In this case the LB94 calculation with DZ basis

gave the same assignment, albeit quantitatively less accurate.

At higher energies the calculated spectrum is in worse quanti-

tative agreement with the experiment, but the positions and

the shape of the experimental profile are well reproduced by

the theory, although the experiment is in general much

smoother than the calculation. Namely there is a nice corre-

spondence of maxima at 2.4, 2.7, and 3.2 eV, and also the dip

at 2.6 eV is also very nicely reproduced. It is not easy to attrib-

ute the observed worsening of the theory as the energy

increases: current effects might play a role due to the large

size of the system but also basis set deficiencies may become

more important as the energy increases.

Since we do not have absolute values for the experimental

absorption intensities, our comparison is of course based on a

rescaling and we cannot exclude an overall remodulation of

the spectral weights.

Conclusions

We have described the implementation of a recently devel-

oped TDDFT algorithm based on the complex dynamical polar-

izability to calculate the photoabsorption spectrum of large

metal clusters. Applications of the method are expected in the

field of nanoplasmonics. The TDDFT equations are solved in

Figure 4. TDDFT photoabsorption spectra of Au144(SH)60 calculated by the

complex polarizability algorithm. PBE-DZ, LB94-DZ, and LB94-TZP results

are reported in the upper, central, and lower panel, respectively. Partial

dipole components (z and xy) are given separately. Experimental data

Au144(SC6H13)60 at 77 K are reported.[39]
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the space of the density fitting functions, so the problem is

recast as a nonhomogeneous system of linear equations

whose resolution need a numerical effort comparable to that

of the SCF procedure. The construction of the matrix represen-

tation of the dielectric susceptibility is very efficient and is

based on a discretization of the excitation energy, so such

matrix is easily obtained at each photon energy value as a lin-

ear combination of constant matrix and energy-dependent

coefficients.

The potentiality of the method is demonstrated by predict-

ing the photoabsorption spectrum of the Au144(SH)60

monolayer-protected model cluster: when the LB94 Vxc poten-

tial and TZP basis are chosen, the agreement between theory

and experiment is found to be quite nice.

The method is very promising, and several directions of

development are envisaged. First, we expect to be able to

deal with large metal clusters up to one thousand atoms and

with low symmetry. Another promising avenue for algorithmic

development lies in the inclusion of Hartree–Fock exchange in

hybrid Vxc potentials, which could further improve the accu-

racy of TDDFT predictions. Another possibility is to implement

more efficient integration algorithms in the frequency space.

Further extension of the theory will be toward the implemen-

tation of the rotation strength to study dichroism of chiral

clusters.
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