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A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the
space of the density fitting auxiliary basis set has been developed and implemented. The method
extracts the spectrum from the imaginary part of the polarizability at any given photon energy,
avoiding the bottleneck of Davidson diagonalization. The original idea which made the present
scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs
in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear
combination of constant matrices with photon energy dependent coefficients. The method has been
applied to very different systems in nature and size (from H2 to [Au147]−). In all cases, the maximum
deviations found for the excitation energies with respect to the Amsterdam density functional code are
below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon
energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob
plasmon scaling factor, and induced density analysis, which have been all implemented. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4923368]

I. INTRODUCTION

The calculation of optical spectra for large molecules has
become a routine task, thanks to efficient implementations
of the Time Dependent Density Functional Theory (TDDFT)
method. More specifically, various approaches are available in
computer codes which allow the treatment of large molecular
systems.

In particular, it is worth mentioning the “standard” quan-
tum chemistry approach, where molecular Kohn-Sham (KS)
orbitalsareexpandedas linearcombinationofatomicfunctions,
and the TDDFT equations are recast to a diagonalization of
a matrix Ω according to the density matrix formulation of
Casida.1 The problem consists in extracting a set of eigenvalues
and eigenvectors ofΩ, whose dimension is Nocc×Nvirt. Such
method is efficiently implemented in many quantum chemistry
codes, like, forexample,AmsterdamDensityFunctional (ADF)
code,2–4 which takes advantages of the molecular symmetry
(employing the Wigner-Eckart theorem for the TDDFT part),
of the Davidson diagonalization algorithm, of efficient fitting
techniques of the first order density through the use of auxiliary
basis functions to improve matrix-vector multiplication within
the Davidson algorithm, and finally of the parallelization of the
code which can exploit modern supercomputer architectures.
Despite all these efforts, it is very difficult to calculate valence
photoabsorption spectra over a wide excitation energy range
when very large systems are considered. In fact, the Davidson
iterative algorithm is very efficient on largeΩmatrices, but it is
limited to the extraction of a relatively small number of lowest
eigenvalues and eigenvectors; such diagonalization algorithm
is generally employed in all the TDDFT codes which use the
Casida method, like, for example, TURBOMOLE.5

a)e-mail: stener@univ.trieste.it

Therefore, the Casida TDDFT algorithm remains very
efficient on large systems only when few low energy transitions
are extracted but cannot be employed in practice to calculate
a photoabsorption spectrum over a wide energy range, often
necessary for a complete simulation of an experiment. Of
course as the molecule/cluster size increases such problem will
become more and more pathological, preventing any calcula-
tion of the spectrum. Moving from this practical consideration,
it would be very appealing to find an alternative TDDFT algo-
rithm to avoid the bottleneck of the Davidson diagonalization,
capable to calculate the spectrum without limitations on the
value of the maximum excitation energy.

Before describing the new algorithm, it is worth mention-
ing other recent alternative TDDFT strategies, which are prom-
ising for applications to large systems.

The first one is based on the explicit time-propagation
technique. This scheme was introduced in the seminal work
of Yabana and Bertsch6 and is now implemented usually over
real space grids, like in the OCTOPUS program,7 which has
been recently applied to study the photoabsorption of large
biomolecules8 and large metal clusters, clusters up to 147
atoms9 and 263 atoms.10

The second one consists in a superoperator formulation
of the TDDFT, which allows the calculation of the dynamical
polarizability by means of a very efficient Lanczos method,
implemented with plane waves basis set;11 it has been applied
to systems like C60, C70, zinc tetraphenylporphyrin, and chlo-
rophyll a.12–14 The Lanczos method is quite appealing for large
systems since it furnishes the whole excitation spectrum, at
variance with Davidson diagonalization which is limited to
the lower part of the spectrum. A third very recent scheme
has been developed by Grimme and consists in a simplified
Tamm Dancoff Approximation (TDA)15 and TDDFT,16 while
a linear-scaling TDDFT has been developed by Zuehlsdorff.17

0021-9606/2015/143(2)/024106/12/$30.00 143, 024106-1 © 2015 AIP Publishing LLC
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A very promising recent method for large systems is the
TDDFT time-propagation with Transition Contribution Map
(TCM) by Häkkinen,18 which has been employed to calculate
the spectrum of clusters containing up to 314 gold atoms
protected by ligands. Very recently, Nobusada has developed
a massively parallel implementation of TDDFT based on real-
time and real-space,19 which allowed to consider clusters con-
taining up to 1414 gold atoms.20 It is worth noting that each of
these algorithms has its different pros and cons which must be
taken into account. In particular, the Casida algorithm suffers
for the already mentioned problem of extracting of a large
number of eigenvalues, but it has the great advantage to allow
a very detailed assignment of the spectral features in terms of
one-electron (1h1p) excited configurations. On the other hand,
the TDDFT algorithms based on the time-evolution allow the
calculation of the spectrum on a wide energy range without any
problem; however, they do not give information regarding the
nature of the transitions involved in the spectral feature. The
only possibility is the inspection of the first order perturbed
density whose nature is useful for a qualitative description but
the information gained is too limited to allow a detailed assign-
ment in terms of electronic transitions. At the moment, to the
best of our knowledge, the only method which does not suffer
energy limitation and is able to give a detailed assignment is
the TDDFT time-propagation with TCM by Häkkinen.18

Despite already Linear Response (LR) TDDFT imple-
mented codes, it is worth mentioning also the subsystem
formulation of LR-TDDFT,21,22 which is a very promising new
idea for future applications on very large systems.

Finally, it must be considered that also the development of
highly parallel ab initio and density functional theory (DFT)
codes like NWCHEM23 is an alternative way to describe large
systems with respect to the proposal of new TDDFT algo-
rithms. This way appears very practical, thanks to availability
of massively parallel supercomputers.

In the present work, we propose a new TDDFT algo-
rithm for the efficient calculation of photoabsorption spectra
without the need of the diagonalization and therefore at any
given energy. The necessary approximations introduced in the
scheme can be safely kept under control. Moreover, the present
algorithm allows a detailed analysis of the spectrum both in
terms of 1h1p excited configuration which can be represented
by TCM as well as in terms of the first order perturbed density.
The method has been implemented within the ADF suite of
codes and has been parallelized with standard Message Pass-
ing Interface (MPI); therefore, it is suitable to run on very large
supercomputers.

II. THEORETICAL METHOD AND IMPLEMENTATION

The first requirement of the new algorithm must be to
avoid the diagonalization of the large Ω matrix, which is
the main bottleneck of most implementations. This can be
formally obtained if the photoabsorption spectrum σ (ω) is
calculated point by point, from the imaginary part of the
dynamical polarizability α (ω),

σ (ω) = 4πω
c

Im [α (ω)] . (1)

This expression is of practical interest when the polar-
izability is calculated for complex frequency, i.e., ω = ωr

+ iωi, where the real part ωr is the scanned photon frequency
(energy) and ωi is the imaginary part which corresponds to
a broadening of the discrete lines and can be interpreted as a
pragmatic inclusion of the excited states finite lifetime. The
introduction of a small imaginary part in the frequency is well
established, for example, in the Lanczos method11 and, more
recently, in the damped response24 formalism. This procedure
introduces the arbitrary quantity ωi and prevents the analysis
of the spectrum by discrete lines. This is not a problem when
the excited state density is so high that the analysis state-by-
state would be impractical.

It will be shown in the following that it is possible to calcu-
late efficiently the complex dynamical polarizability α (ω)
introducing some approximations. First, let us start with the
definition

αzz (ω) =


ρ
(1)
z (ω,r) zdr (2)

of the z-th diagonal term of the polarizability tensor, where
ρ
(1)
z (ω,r) stands for the Fourier component of the given fre-

quency of the first order time dependent induced density by the
external time dependent scalar potential. For the calculation
of the spectrum, the isotropic part of the tensor is actually

extracted from the trace: α (ω) = 1
3

3
i=1

αii (ω), where the index

i runs on the three components x, y, and z.
Following the TDDFT theory, the induced density can

be calculated from the dielectric susceptibility χKS
�
ω,r ,r ′

�

of a reference system of non-interacting electrons under the
effect of an effective perturbing potential V z

SCF (ω,r) sum of
the external potential plus the Coulomb and the exchange-
correlation (XC) response potential.

This is summarized by the following coupled linear equa-
tions:

ρ
(1)
z (ω,r) =


χKS

�
ω,r ,r ′

�
V z

SCF

�
ω,r ′

�
dr ′, (3)

V z
SCF (ω,r) = V z

EXT (ω,r) +


ρ
(1)
z

�
ω,r ′

�
dr ′

�
r − r ′

�

+
∂VXC

∂ρ

�����ρ(0)
ρ
(1)
z (ω,r) . (4)

The Adiabatic Local Density Approximation (ALDA)25 has
been employed in expression (4) (XC kernel local in time and
additionally also in space) and V z

EXT (ω,r) corresponds in prac-
tice to the z dipole component. The present implementation is
limited to ALDA and possible extensions to gradient corrected
kernels are not expected to give any problem; on the other
hand, in the present formulation, it is not possible to employ
non-local kernels from hybrid functionals, as also specified
after Equation (24).

Now, expressions (3) and (4) can be written in operatorial
form

ρ
(1)
z = χKSV z

SCF, (5)

V z
SCF = V z

EXT + K ρ
(1)
z , (6)
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where in expression (6), K stands for the sum of the Coulomb
and the XC kernels,

K
�
r ,r ′

�
= KC

�
r ,r ′

�
+ KXC

�
r ,r ′

�

=
1�

r − r ′
� + δ

�
r − r ′

� ∂VXC

∂ρ

�����ρ(0)
. (7)

Due to the linearity of (5) and (6), it is possible to eliminate
V z

SCF and to obtain an equation for ρ(1)z , which reads as

[1 − χKSK] ρ(1)z = χKSV z
EXT. (8)

Now, it is convenient to represent Equation (8) over a basis
set and since the unknown term corresponds to the induced
density, it is natural to choose the auxiliary density fitting
functions fµ as basis set. More precisely, it is even better to
choose such basis as a subset of the fitting set, since the induced
density will be affected mainly by valence orbitals so all the
functions needed to fit the core density should be excluded
without losing accuracy. This is true only when valence excita-
tions are considered (like in the present work); if core electron
excitations are considered, the algorithm remains valid, but the
fitting functions must be selected in a different way, allowing
flexibility in order to properly describe products between a
core and a virtual orbital. With this representation ρ

(1)
z

(
ω,−⇀r
)

=
K
µ

fµ (r) bµ (ω), the following non-homogeneous system of

linear algebraic equations is obtained, which written in matrix
formulation reads as

[S −M (ω)]b = d. (9)

In Equation (9), S is the overlap matrix between fitting
functions, b is the unknown vector with the expansion coeffi-
cients bµ (ω) of ρ

(1)
z , and d is the frequency dependent vector

corresponding to the known non-homogeneous term, whose
components are

dµ =



fµ
�
χKS (ω) |z⟩ , (10)

and finally, the elements of the frequency dependent matrix M
are

Mµν =



fµ
�
χKS (ω) K | fν⟩ . (11)

Now, let us consider the computational effort needed to
solve Equation (9): (i) the construction of the matrices S, M,
and vector d and (ii) the resolution of linear system (9). First,
consider the resolution of the linear system: it will scale with
N3 where N is the dimension of the matrix corresponding to
the number of the fitting functions. Although this part scales
with the third power, it will be shown that the dimension N
can be kept in practice rather low, for example, for Au atom,
44 functions are enough to give accurate results, so a cluster of
1000 Au atoms will give a matrix of dimension 44 000, which
is tractable with moderate efforts on a medium size computer
cluster. This simple observation shows that as it concerns the
linear system, the approach is competitive since it would allow
to calculate much larger systems without the limitation of
the Davidson algorithm, if a proper selection of the fit set is
performed.

Let us now analyse the effort needed to build the frequency
dependent M (ω) matrix: apparently, this is a prohibitive task,

since it should be repeated for each frequency. The original
characteristic of the present new method is the introduction of
a simple approximation which should enable the construction
of M (ω) as a linear combination of frequency independent
matrices Gk with frequency dependent coefficients sk (ω), with
this expression,

M (ω) =

k

sk (ω)Gk; (12)

with this idea, a set of matrices
�
Gk

	
is calculated and stored

only once at the beginning; then, the matrix M (ω) is calculated
very rapidly at each photon energy ω. To justify expression
(12), we start with the expression of the KS dielectric suscep-
tibility,26

χKS
�
ω,r ,r ′

�
=

Nocc
i

Nvirt
a

ϕi (r) ϕa (r) 4εia
ω2 − ε2

ia

ϕa

�
r ′
�
ϕi

�
r ′
�

=

Nocc
i

Nvirt
a

Θia (r) λia (ω)Θia

�
r ′
�

(13)

in (13) we have assumed real KS occupied (ϕi) and virtual (ϕa)
orbitals while εia = εa − εi are differences between virtual and
occupied KS eigenvalues. Let us consider now carefully the
right hand side of expression (13): the frequency dependence
enters only in the λia (ω) factor, which is “almost” constant
for all the pairs of index i- and a- for which εa − εi is almost
constant. This happens when many εia are close together, that
is, when the density of “zero order” excitation energies is
high. This important observation allows to profitably change
the double sum in expression (13). In fact, let us consider the
distribution of all the εia on the excitation energy axis, like
in Figure 1, and define an energy grid over this axis, starting
from the minimum εia which corresponds to εLUMO − εHOMO.
The energy grid consists of P + 1 knots {Ek}k=1, ...,P+1 and P
intervals are defined as Ik = [Ek,Ek+1) , k = 1, . . . ,P.

It is possible to change the double sum of previous Equa-
tion (13) as follows:

χKS
�
ω,r ,r ′

�
=

P
k=1


εia∈Ik

Θia (r) λia (ω)Θia

�
r ′
�
. (14)

The advantage of this new double sum is that, if the energy
knots are dense enough, the values of εia within each interval
can be considered, with good approximation, almost constant
and equal to the average Ei =

Ei+Ei+1
2 : this allows to bring the

λia (ω) factor outside the inner sum,

χKS
�
ω,r ,r ′

�
=

P
k=1

4Ek

ω2 − E
2
k


εia∈Ik

Θia (r)Θia

�
r ′
�
, (15)

FIG. 1. Discretization of the energy axis to accommodate eigenvalue differ-
ences for the efficient calculation of the dielectric susceptibility. See text for
details.
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so in expression (15), the frequency dependent dielectric
susceptibility is a linear combination of frequency independent
objects (the inner sum) while only the coefficients are fre-
quency dependent. Moreover, if one is interested in the lowest
part of the spectrum as it usually happens, the sum in (15) can
be safely truncated at a maximum energy cutoff, which can be
chosen checking the convergence of the results with respect
to such energy cutoff. This re-summation is the central idea of
the present algorithm and is quite general irrespective to the
introduction of the auxiliary basis set for the density fitting.
We will now use this approach to build the matrix M (ω). From
Equation (11) and using expression (15), we get

Mµν =

P
k=1

sk (ω)


εia∈Ik


fµ
���Θia (r)

 

Θia

�
r ′
��

K | fν⟩

=

P
k=1

sk (ω)Gk
µν, (16)

which, now justifies previous expression (12), defines the ma-
trix Gk and the coefficients,

sk (ω) = 4Ek

ω2 − E
2
k

. (17)

The construction of each Gk matrix corresponds to a matrix-
matrix product,

Gk
µν =


εia∈Ik


fµ
���Θia (r)

 

Θia

�
r ′
��

K | fν⟩

=


εia∈Ik

Ak
µ, iaBk

ia,ν, Gk = AkBk . (18)

The matrices A and B must be built, formally with the
following expansions:

Ak
µ, ia =


fµ
���ϕiϕa


=

basis
στ


fµ
���στ


cσicτa (19)

in expression (19), σ and τ refer to orbital basis functions
and c are the molecular orbital expansion coefficients (KS
eigenvectors).

The calculation of (19) would be far prohibitive, but in
ADF, a very efficient “pair fitting” technique has been already
developed, so the run of the basis indexes is not free but limited
so that at least one basis function lies on the same center of
the fit function. This step is the most expensive in the matrix
construction. In expression (19), the integrals between a fit
function and two basis functions are already available in ADF
between primitive (not symmetrized) functions. Actually, we
have also implemented the calculation of the


fµ
���στ


integrals
when the functions lie on three different centres. Since Slater
type orbitals (STOs) functions are employed, these integrals
are not analytical but can be easily calculated by fitting the
products of two basis functions with the auxiliary density
fitting functions. This does not change the dimension of Equa-
tion (9) but increases the computational effort to build matrix
Ak (Equation (19)). However, we have noticed in preliminary
test calculations that this does not change the results appre-
ciably, and therefore, we have always neglected the


fµ
���στ


integrals when the functions are on three different centres.

For the matrix B, the procedure is the same

Bk
ia,ν = ⟨ϕiϕa| 1�

r ′ − r ′′
� | fν⟩ + ⟨ϕiϕa| ∂VXC

∂ρ
| fν⟩ . (20)

The first term in (20) can be calculated using the Resolu-
tion of the Identity (RI),

⟨ϕiϕa| 1�
r ′ − r ′′

� | fν⟩ =

γη


ϕiϕa

��� fγ


S−1
γη



fη
� 1�

r ′ − r ′′
� | fν⟩

=
(�

Ak
�+S−1F

)
ia,υ

, (21)

where in (21), the matrix F is defined as follows:

Fµν =



fµ
� 1�

r ′ − r ′′
� | fν⟩ . (22)

The second term in (20) can be calculated in a similar
fashion,

⟨ϕiϕa| ∂VXC

∂ρ
| fν⟩ =


γη


ϕiϕa

��� fγ


S−1
γη



fη
� ∂VXC

∂ρ
| fν⟩

=
(�

Ak
�+S−1Z

)
ia,υ

, (23)

and the matrix Z in (23) is defined as follows:

Zµν =



fµ
� ∂VXC

∂ρ
| fν⟩ . (24)

Equations (20), (23), and (24) are limited to ALDA and
cannot be used in the present formulation for non-local kernels.

Therefore, from (20), (21), and (23), we get

Bk =
�
Ak

�+S−1 (F + Z) . (25)

Finally, from Equations (18) and (25),

Gk = DkL, (26)

where the following two new matrices are introduced:

Dk = Ak
�
Ak

�+
, (27)

L = S−1 (F + Z) . (28)

In practice, all the integrals (Equations (20)–(23)) needed to
calculate the Gk matrices are already available in ADF, except
the matrix Z (Eq. (24)) which has been implemented numeri-
cally. Then, each Gk matrix is calculated by expression (26).

We have still to calculate the d vector of Equation (10),
i.e., the non-homogeneous term of Equation (9). Taking advan-
tage of previously described technique, it is straightforward
that

dµ =



fµ
�
χKS (ω) |z⟩ =

P
k=1

sk (ω)

×


εia∈Ik


fµ
���Θia (r)

 
Θia (r) ���z


=

P
k=1

sk (ω)


εia∈Ik

Ak
µ, ia ⟨ϕi | z |ϕa⟩ , (29)

so vector d is easily calculated at each frequency as a linear
combination of frequency independent vectors, accessible
from A matrix and conventional dipole matrix elements.
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Finally, the complex dynamic polarizability components
are calculated as

αzz (ω) =


ρ
(1)
z (ω,r) zdr =


µ

bµ


fµzdr =


µ

bµnµ;

(30)

the vector b in (30) is the solution of Equation (9), and the ele-
ments of the n vector are integrals which are easily calculated
analytically.

This step concludes the calculation of the dynamic polar-
izability and therefore of the spectrum and furnishes the
first order TD density which can be used to analyze and
rationalize the results. However, our goal is to get also a
more complete analysis of the spectrum, namely, in terms of
linear combination of one-electron excited configurations or
in terms of TCM.18 For this purpose, it is convenient to adopt
the Modified Sternheimer Approach (MSA) formulation27 of
linear response, which furnishes the first order perturbation of
the KS orbitals,

�
H0

KS − εi − ω
�
ϕ
(1,−)
i = −VSCFϕi,

�
H0

KS − εi + ω
�
ϕ
(1,+)∗
i = −VSCFϕi.

(31)

From the perturbed orbitals, the perturbed density is obtained
as

ρ(1) = 2
occ
i

ϕi

(
ϕ
(1,−)
i + ϕ

(1,+)∗
i

)
. (32)

It is worth noting that, for convenience, the second inho-
mogeneous equation in (31) is actually the complex conju-
gate with respect to that reported in Ref. 27 for ϕ(1,+)

i . Equa-
tions (31) and (32) were used in the past to calculate self-
consistently the VSCF via Equation (6) in old TDDFT imple-
mentations,28–30 but in the present context, they are useful to
easily get the analysis in terms of one-electron configurations.
In fact, if the perturbed orbitals are expanded in terms of virtual
KS orbitals, the term in brackets in Equation (31) is diagonal.
Moreover, the VSCF is already available from Equations (9) and
(6), so the following equations are obtained:

[εa − εi − ω] ca−i = − ⟨ϕa |VSCF |ϕi⟩ ,
[εa − εi + ω] ca+∗i = − ⟨ϕa |VSCF |ϕi⟩ . (33)

The polarizability is then expressed by

αzz (ω) = 2
occ
i

virt
a

⟨ϕi | z |ϕa⟩ �ca−i + ca+∗i

�

=

occ
i

virt
a

⟨ϕi | z |ϕa⟩ Pa
i ; (34)

the density matrix (dipole amplitudes) Pa
i is introduced in

(34). From Equation (33) and using the definition of sk(ω)
(Equation (18)), we obtain

Pa
i = sk (ω) ⟨ϕi |VSCF |ϕa⟩ . (35)

In practice, the absorption spectrum is obtained from the imag-
inary part of Equation (34) (like in expression (30)), and there-
fore, the analysis in terms of one-electron excited configu-
ration and TCM is obtained from imaginary part of expres-
sion (35).

Using Equations (6) and (28), dipole amplitudes are actu-
ally calculated as follows:

Pa
i = sk (ω)


⟨ϕi | z |ϕa⟩ +

f it
µτ

�
Ak

�+
ia, µ

Lµτbτ

. (36)

III. COMPUTATIONAL DETAILS

The method has been implemented in a local version of the
ADF code, and more precisely, ADF has been modified in or-
der to save on external files, all the needed integrals, and matrix
elements, which were already calculated by ADF with the only
exception of matrix Z (Equation (24)); this matrix has been
implemented by the Gaussian numerical integration scheme of
ADF. Then, a new program (independent by ADF) reads the
files, builds all the needed matrices, solves TDDFT equation
(9), calculates the spectrum, and performs the analysis. We
have decided to implement the new code in a separate program
independent by ADF in order to exploit more easily the paral-
lelization, with the goal to obtain a code which was massively
parallel and easily portable on different architectures. For this
reason, we have used standard MPI and ScaLAPACK libraries.
However, the inclusion of the complete program within ADF
is under consideration and will be available in a future release
of ADF.

In all calculations, we have employed the LB94 exchange-
correlation model potential31 to obtain the KS orbitals and
eigenvalues from the KS equations, while the exchange-
correlation kernel is approximated by ALDA25 in the TDDFT
part taking the derivative of the Vosko Wilk Nusair (VWN)32

LDA XC potential. The basis sets employed consist of STOs
included in the ADF database, as well as the auxiliary density
fitting functions. The new program allows a simple choice of a
subset of the ADF fitting functions, in order to save computer
time when some fitting functions are not necessary for an
accurate description of the photoabsorption spectrum. The
strategy to choose a properly reduced fitting subset consists
to perform some preliminary TDDFT test calculations on
simple systems (for example, diatomic molecules) increasing
gradually the number of fit functions. Typically, this procedure
converges rather rapidly, giving calculated spectra that match
better and better with that obtained with a standard TDDFT
calculation by ADF. When a good match is obtained, the
fitting subset of the corresponding atoms can be used for more
complex or larger systems, as it will be shown in details in
Sec. IV.

Equation (9) must be solved for each non-equivalent
dipole component with the constraint that the integral of
the induced density ρ(1) must be zero over space due to the
orthogonality of occupied-virtual orbitals. This condition is
naturally satisfied when the dipole component is not totally
symmetric; on the other hand, when the system symmetry is
low and one or more dipole components are totally symmetric,
such constraint can be easily imposed by Lagrange multipliers
after Equation (9) is solved. Most of the computational effort is
spent in the resolution of complex algebraic linear system (9),
which is managed by ScaLAPACK parallel library and should
be portable on very large supercomputers.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.105.55.85 On: Fri, 10 Jul 2015 16:03:17



024106-6 Baseggio, Fronzoni, and Stener J. Chem. Phys. 143, 024106 (2015)

While the ADF code fully exploits symmetry, this is only
partially done in the present method: the density fitting basis
functions are not symmetrised by now; however, only the pairs
of occupied (ϕi) and virtual (ϕa) orbitals involved in allowed
dipole selection rules are actually considered.

We have implemented the plasmon analysis in the present
method according to Jacob et al.:33 they suggested to study the
evolution of the TDDFT photoabsorption spectra by changing
a scaling factor 0 ≤ λ ≤ 1 used to “turn on” the coupling
matrix K. This can be easily done in present implementation
multiplying the matrix L (Equation (28)) by the scaling factor
λ. This scaling factor analysis has proven successful in previ-
ous studies on silver chains34 and polyacenes.35

It is worth noting that the dynamic polarizability and
therefore the spectrum can be in principle calculated equiva-
lently by expression (30) or (34); however, we have found that
expression (34) is much more accurate and less demanding in
terms of density fitting size. This is not surprising since the
dipole integrals in expression (34) are analytical while expres-
sion (30) requires a fitting able to accurately fit the occupied-
virtual orbital product. For this reason, all the spectra reported
in this work have been calculated with expression (34).

IV. RESULTS AND DISCUSSION

We have tested the performance of the new TDDFT algo-
rithm implemented in this work, on a series of small but
rather different systems (diatomic H2, Na2 Au2, and triatomic
H2O) and finally on two rather large gold clusters Au86

36 and
[Au147]−.37 The goal is to achieve a firm assessment of the
accuracy of the method on small systems as well as of an
accurate choice of the density fitting set. Finally, the large
metal clusters have been selected since they have been already
treated by standard TDDFT and offer therefore a good chance
to compare the performances of the new method and test its
numerical economy. It must be considered that the program
is now installed only on a small HP ProLiant ML350p Gen8
server (with 16 cores Intel® Xeon® CPU E5-2650 2 GHz),
on which the present calculations were run. The porting to a
supercomputer and therefore the applications to much larger
systems will be considered as the next step of a future work.

A. H2

In Figure 2, we have reported the TDDFT photoabsorption
spectrum of H2 with the polarization along the bond, calculated
by ADF and by present method employing a DZ basis set.
An interatomic distance of 0.7414 Å has been used. The pho-
toabsorption corresponds to the 1σg → 1σu valence transition.
In order to have an easier comparison between the results of
the two algorithms, the discrete lines obtained by ADF have
been convoluted by Lorentzian functions with Half Width Half
Maximum (HWHM) η = 0.3 eV according to the following
expression:

f (ω) =
N
I

η2 f I
(ω − ωI)2 + η2

. (37)

ωI and f I in (37) are the excitation energies and oscillator
strengths, respectively, while the presence of η2 in the numer-

FIG. 2. Calculated TDDFT valence photoabsorption spectra of H2 for po-
larization along the bond (Z direction). ADF results compared with present
algorithm with various choices for the auxiliary basis for the density fitting.

ator guarantees that the maximum of the Lorentzian forω = ωI

corresponds to the value of f I when only one line is present.
For the new algorithm, the imaginary part of the polarizability
is calculated by Equation (34) for complex photon energy and
in Figure 2, the plotted curves correspond to

f (ωr) = 2ωrωi

3
Im [α (ω)] . (38)

ωr and ωi in (38) are the real and the imaginary part of the
photon energy, respectively, and it must also beωi = η in order
to have the same convolution as in ADF.

An excellent agreement between the two methods emerges
from the figure. Four different curves have been obtained with
the new algorithm employing different reduced density fitting
sets in the TDDFT part. The ADF DZ density fitting set of H
consists of 4s, 3p, 2d, 1f, and 1g Slater functions (39 in total),
which is much larger than needed; in fact, the absorption is
well described already with only 2 s fitting functions, with
an error in the energy of the maximum of only 0.12 eV. The
match is excellent with 4 s fitting functions both for energy
and intensity. Already at this level, it is evident that fitting set
can be strongly reduced with respect to the original one.

To check the algorithm performance also for the real
part of the dynamic polarizability, the comparison with ADF
is reported in Figure 3. The agreement is excellent and the
new algorithm is very accurate to reproduce quantitatively the
behaviour of the polarizability with only 4 s density fitting
functions.

B. Na2

H2 is a very simple molecule, so it is important to test
the algorithm on systems which become more and more com-
plex in order to gradually identify possible pitfalls of the
method and to get acquainted with its performances. In this
respect, Na2 is interesting because both s and p atomic func-
tions are important to describe valence molecular orbitals;
moreover, we have employed a DZP basis set in order to
include also d functions in the calculation. An interatomic
distance of 2.9997 Å has been used. The original density fitting
set of ADF for Na consists of 88 functions (14s 7p 6d 2f 1g);
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FIG. 3. Calculated TDDFT real part of the dynamical polarizability of H2
for polarization along the bond (Z direction). ADF results (circles) compared
with present algorithm (solid line).

after some preliminary test calculations, we have identified a
much smaller set (7s 5p) containing only 22 functions which
has been employed in the TDDFT calculation for Na2 with the
new algorithm.

The photoabsorption of Na2 is considered in Figure 4,
with convolution ωi = η = 0.15 eV and bond direction along
the Z axis: the upper panel considers the photoabsorption
with parallel polarization (along Z) and the lower panel with
perpendicular polarization (along X). Taking into account, the
electronic structure of Na2,

(1σg)2(1σu)2(2σg)2(2σu)2(3σg)2(3σu)2(1πu)4(1πg)4
× (4σg)2(4σu)0(2πu)0,

FIG. 4. Calculated TDDFT valence photoabsorption spectra of Na2 for po-
larization along the bond (Z direction, upper panel) and perpendicular to the
bond (X direction, lower panel). ADF results (black lines) compared with
present algorithm (blue line).

the absorption with X polarization at 3.38 eV is ascribed to the
4σg → 2πu transition while the other one with Z polarization at
2.35 eV is ascribed to the 4σg → 4σu transition. The match of
the new algorithm with ADF is quantitative even with a fitting
set which is 4 times smaller than the original one.

C. Au2

We have considered gold dimer for two reasons: first its
spectrum is quite complicated, with many transitions involving
mixing of several one-electron excited configurations. The
valence molecular orbitals are contributed by functions up to 4f
and the density fitting set is quite rich, so its reduction must be
carefully tested. Second, gold clusters are expected to be one of
the most important applications of the present method in future
works; therefore, it is very important to properly assess and to
validate a robust choice of the density fitting for Au atom to
be employed on larger systems.

The calculations have been performed at scalar relativistic
level with Zero Order Relativistic Approximation (ZORA).
The interatomic distance of 2.47 Å has been employed, and
both DZ and TZ2P basis sets (with frozen core up to Au 4f)
have been tested. The photoabsorption of Au2 calculated with
the DZ basis set is considered in Figure 5, with convolution
ωi = η = 0.30 eV: the upper panel shows the photoabsorption
with polarization parallel (Z) to the bond direction and the
lower panel with perpendicular (X) polarization. The corre-
sponding transitions calculated by ADF have been reported
in Table I, together with their nature in terms of one-electron
excited configurations. For the new algorithm, the density

FIG. 5. Calculated TDDFT valence photoabsorption spectra of Au2 for po-
larization along the bond (Z direction, upper panel) and perpendicular to the
bond (X direction, lower panel) with DZ basis set. ADF results (black lines)
compared with present algorithm (blue line).
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TABLE I. Relevant TDDFT dipole allowed excitations of Au2 (DZ basis set,
LB94 potential, and ZORA scalar relativistic) calculated by ADF.

Transition E (eV) f Assignment

1Σu 3.23 0.157 100% 14σg (86% 6s 14% 5dz2)
→ 14σu (78% 6s 18% 6pz)

3Σu 6.21 0.165 78% 13σg (85% 5dz2 14% 6s)→ 14σu

7Σu 8.50 1.299
62% 8πg (100% 5dxz)→ 9πu (100% 6px,y)
17% 13σu (99% 5dz2)→ 15σg (95% 6pz)

2Πu 7.30 0.097
69% 14σg→ 9πu

28% 4δg (100% 5dxy,x2−y2)→ 9πu

4Πu 8.22 0.174
62% 4δg (100% 5dxy,x2−y2)→ 9πu

17% 14σg→ 9πu

9Πu 11.40 1.241
44% 4δu (100% 5dxy,x2−y2)
→ 9πg (98% 6px,y)

20% 13σu (99% 5dz2)
→ 9πg (98% 6px,y)

12Πu 15.87 0.204 98% 8πg→ 16σu (84% 6pz)

fitting set has been reduced to 5s 4p 4d 1f for a total of 44
functions, with respect to the original set of 25s 15p 12d 8f
7g for a total of 249 functions, with a reduction of almost a
factor of 6. Starting with the Z dipole absorption spectrum (Σu
transitions), the most intense line is found at 8.50 eV; its nature
consists in a mixing of two configurations: 62% 8πg → 9πu
and 17% 14σg → 9πu, and the molecular orbitals involved are
contributed by Au 5d and Au 6p for the initial and final states,
respectively. The new algorithm simulates very well the ADF
results in terms of intensity, although the excitation energy is
underestimated by 0.2 eV. The other two transitions at lower
energy are very well described in terms of excitation energy;
the only observed discrepancy is a slight intensity overestimate
of the band at 3.23 eV. Similar agreement is found for the
X dipole component (subspecies of Πu transitions), with only
minor discrepancies in the intensity for the weaker transition
at 7.30 eV and in the excitation energy of the transition at
11.40 eV an error of only 0.1 eV.

In Figure 6, the Z component has been calculated with
the TZ2P basis set; a reduced density fitting set of 5s 4p 4d

FIG. 6. Calculated TDDFT valence photoabsorption spectra of Au2 for polar-
ization along the bond (Z direction) with TZ2P basis set. ADF results (black
lines) compared with present algorithm (blue line).

1f 2g functions has been employed for the new algorithm. The
quality of the agreement is comparable with that obtained with
the DZ basis set, and it is worth noting that the main effect of
an enlarged basis set in the ADF calculations consists in a shift
to lower energy (by 0.5 eV at most) and a moderate intensity
reduction. Both of them are very well reproduced by the new
algorithm as well.

As a general statement, we can say that the new TDDFT
complex polarizability algorithm performs very well on Au2 if
compared with the standard TDDFT Casida implementation of
ADF, with expected deviations limited to few tenths of eV for
the excitation energies and robust intensity reproduction and
with modest deviations found for the weaker transitions.

D. H2O

Water molecule has been calculated at DZP level. The
absorption spectrum for both Y direction (in the molecular
plane) and Z direction (C2 axis) is considered in Fig. 7, with
convolution ωi = η = 0.30 eV. The original density fitting
auxiliary basis set for O atom, consisting of 68 functions
(10s 5p 4d 2f 1g), has been reduced to 24 functions (2s 4p
2d) while for H atom; the original set of 39 functions (4s
3p 2d 1f 1g) has been reduced to 5 functions (2s 1p). Two
transitions are found when the polarization is along Y (b2),
a weaker one at 12.63 eV ascribed to a 100% 3a1 → 2b2
transition, and a stronger one at 14.08 eV (100% 1b2 → 4a1).
The spectrum calculated by complex polarizability algorithm
is in good agreement with ADF for both transition energy (with
deviations around 0.1 eV) and intensity; only for the weaker
transition, the intensity appears slightly overestimated. When

FIG. 7. Calculated TDDFT valence photoabsorption spectra of H2O for
polarization along the Y (upper panel) and Z (lower panel) directions. ADF
results (black lines) compared with present algorithm (blue line).
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the Z dipole component is considered, a single transition is
found at 10.24 eV assigned as a 100% 3a1 → 4a1 excitation;
this time the new algorithm overestimates the transition energy
by 0.15 eV and the intensity by 10%. The discrepancies with
respect to ADF are limited to 0.15 eV also for H2O, and
therefore, they are of the same size as found for previous
biatomic systems.

E. Au86

Since, up to now, the complex polarizability algorithm
has been validated on simple small systems of different nature
comparing individual transitions with respect to ADF, it is
now necessary to assess its performances in terms of accuracy
and computational economy also on larger systems, which we
expect should represent the target of its future applications. We
have taken into account first the Au86 gold nanowire, which has
been already considered in our previous work, employing a DZ
basis set and LB94 exchange correlation potential and displays
a strong longitudinal plasmon around 2.35 eV.36 Plasmons
are photoabsorption features which start to appear when the
metal (typically gold or silver) cluster size is beyond 2 nm
for gold and are associated to free (collective) oscillations of
the conduction band electrons and give rise to the so-called
Surface Plasmon Resonance (SPR). Note that the longitudinal
size of Au86 is 2.59 nm.

In Figure 8, the calculated spectra with both ADF and
complex polarizability methods are compared: the new algo-
rithm performs very well and the maximum absorbance at
2.35 eV is quantitatively reproduced. Moreover, it allows to
calculate the spectrum at higher energy. In the figure, we have
reported the photoabsorption up to 5 eV calculated truncating
the expression of Equation (15) with an energy cutoff of 7 eV, a
value which is high enough to display the opening of the deeper
excitations arising from the Au 5d band, which start to show
up around 4.5 eV. In the inset of the upper panel, we reported a
sketch of an isosurface of the imaginary part of the perturbed
density, calculated from the b vector solution of Equation (8) at
2.35 eV: the dipolar shape is indicative of a typical plasmonic
behaviour. Its nature can be further analysed by means of the
TCM plot reported in the lower panel of Figure 8: the “spots”
are indicative of contribution from one-electron configuration
associated with a pair of orbital energies (occupied on the
X axis (εi) and virtual on the Y axis(εa)). The solid black
diagonal line corresponds to an eigenvalue difference equal
to the excitation energy (2.35 eV) while the dashed black
diagonal line corresponds to the maximum (cutoff) energy of
7 eV presently considered in sum (15), corresponding to the
EP+1 knot in Figure 1. In order to properly discuss TCM and
extract maximum information from it, it is useful to analyze
the KS electronic structure of such cluster: the Fermi energy
is at −10.02 eV, and the s band lies in the interval from −11
to −10 eV, while the d band is mainly located below −12 eV
for occupied orbitals, while virtual orbitals are all mixed 6s-
6p, with 6p contribution gradually increasing with energy. The
maximum contribution to the absorption is given by intra-
band 6s → 6s 6p transitions, in line with strong plasmonic
behaviour, while the 5d → 6s 6p contribution is very low. It
is well known that the plasmon intensity of gold is screened

FIG. 8. Calculated TDDFT valence photoabsorption spectra of Au86 for po-
larization along the longitudinal direction (upper panel). ADF results (black
lines) compared with present algorithm (blue line), inset: imaginary induced
density at 2.35 eV. Lower panel: TCM analysis at 2.35 eV, x and y axes refer
to occupied and virtual eigenvalues, respectively.

by intraband 5d → 6s 6p response,18 such screening is weak
in present case, and therefore, the plasmon gains intensity and
appears rather strong. The TCM analysis is also very useful
since it shows that the contributions from energy configura-
tions decrease rapidly as the difference between the occupied-
virtual eigenvalues moves away from the excitation energy
(solid line), so the cutoff at 7 eV is justified a posteriori. Of
course, if one would be interested to analyse the spectrum also
above the plasmon, such cutoff should be shifted at higher and
higher energy. However, the TCM analysis allows easily to
check if the cutoff has been properly chosen or needs to be
further shifted at higher energy. It is worth noting that if very
high excitation energy were considered, a lower cutoff would
be chosen as well, for example, in the case of core electron
excitations.38

F. [Au147]−
In Au86, the plasmon is very strong because the long

longitudinal cluster size (2.59 nm) allows the collective effects
to be prevailing with respect to the screening of the Au 5d
band. However, if the cluster is larger but more spherical, the
plasmon is less easy to be identified, due to its lower inten-
sity and also because it is overwhelmed by the very intense
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5d → 6s 6p interband transitions. For this reason, we have
considered the [Au147]− cluster in a previous study,37 whose
structure was optimized starting by from an icosahedral sym-
metry with a D5d symmetry constraint, the relaxed structure
was only slightly distorted with respect to Ih. The negative
charge is chosen in order to have a closed-shell electronic
structure. Due to the relaxed reduced D5d symmetry constraint,
the dipole allowed symmetries are A2u and E1u and the absorp-
tion spectrum is their sum. Since we are interested to compare
the present complex polarizability algorithm with respect to
ADF, we have limited the analysis to the A2u symmetry alone;
since for such representation, it is possible to extract safely
300 roots up to 3.78 eV, while for the E1u one, it has proven
impossible to reach such excitation energy due to the already
mentioned problems of the Davidson algorithm. The results
concerning the only A2u dipole component are reported in
Figure 9; it is worth noting that all the spectral features calcu-
lated by ADF (in particular the maximum at 3.45 eV) are very
well reproduced by the new algorithm in terms of excitation
energy, while the intensity is overestimated by a factor of two.
It is worth noting, however, that the complex polarizability in-
cludes excitations up to 7 eV, so we attribute the disagreement
to a kind of “background” intensity deriving from the “tail”
of the higher energy excitations, which is correctly included

FIG. 9. Calculated TDDFT valence photoabsorption spectra of D5d [Au147]−
for polarization along the C5 axis (A2u dipole component). ADF results (black
lines) compared with present algorithm (blue line), inset: imaginary induced
density at 3.45 eV. Lower panel: TCM analysis at 3.45 eV, x and y axes refer
to occupied and virtual eigenvalues, respectively.

in the complex polarizability but is missing in ADF. In this
case, we have also tested if the calculation of the


fµ
���στ


three
centres integrals of Equation (19) would have improved the
agreement between ADF and the new complex polarizability
algorithm. However, also in this case, the contribution of the
three centres integrals has proven irrelevant, so this approxi-
mation is not the origin of the found disagreement. The inset
in the upper panel refers to the induced density calculated at
the photon energy of the maximum. Also in this case, a typical
dipolar shape is obtained, as expected for a SPR. In general,
it is not easy to identify, with other computational schemes,
a weak spectral feature like the present one at 3.45 eV over
a monotonic increasing background, since it may happen that
the resonant intensity is washed up and becomes confused with
the background. For example, the truncated octahedral Au140
cluster did not show any feature at TDDFT level calculated
with a time-evolution algorithm, although a weak plasmon
would have been expected.9

In the lower panel of Figure 9, the TCM analysis is re-
ported, performed at a photon energy of 3.45 eV which corre-
sponds to the maximum of absorption. In this case, the Fermi
energy is at −7.90 eV, the Au 6s band lies between −9 and
−8 eV, and the Au 5d lies between −10 eV and −12 eV for
occupied orbitals while virtual orbitals are all of mixed 6s-
6p nature. This time, the leading contributions come from the
intraband Au 5d → Au 6s 6p configurations (around−11 eV in
the occupied eigenvalues scale) and from the Au 6s → Au 6s
6p ones (around −8 eV in the occupied orbital scale), both of
them are placed very near to the diagonal corresponding to
the eigenvalue difference equal to 3.45 eV. At variance with
Au86, in [Au147]−, the plasmon appears damped by the strong
screening from the intraband Au 5d → Au 6s 6p response.
Such TCM analysis is consistent with the ADF one: such
comparison is relatively easy in this case because in ADF
there are two lines at 3.37 eV and 3.47 eV which are much
more intense than the other ones, so analysis can be restricted
only to these lines. In other circumstances, namely, when one
band corresponds to the convolution of many transitions of
comparable intensity, TCM is much more convenient, since it
can be performed by just taking the excitation energy of the
maximum. On the other hand, in ADF, such situation would
be almost impracticable, since one should analyse one by one,
all the transitions which lie in the energy interval centred on
the band maximum with wideness comparable to the FWHM
employed for the convolution.

The plasmonic nature of the absorption can be also inves-
tigated by means of the scaling factor method suggested
by Jacob,33 which consists to follow the excitation energies
evolution with respect to the scaling factor λ (as outlined in
previous Sec. III): plasmonic excitations are characterized
by a strong sensitivity of the excitation energy with respect
to λ. In Figure 10, we have reported such analysis for both
Au86 and [Au147]−, calculating the spectra with λ from 0
to 1 with step 0.2. The position of the maximum changes
dramatically with respect to λ, in particular the maximum
shifts to higher energy by 0.6 eV in [Au147]− and by 0.4 eV
in Au86 on going from λ = 0 to λ = 0.2. Interestingly, the
energy shift is followed by a strong intensity reduction for the
former and by a substantial intensity conservation for the latter.
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FIG. 10. Plasmon analysis according to Jacob. Upper panel: D5d [Au147]−
(A2u dipole component) and lower panel: Au86 longitudinal dipole compo-
nent. Spectra calculated with present complex polarizability algorithm with
different values of scaling factor parameter λ.

Due to the Thomas–Reiche–Kuhn (TRK) sum rule which
states that the integral of oscillator strengths over the whole
electronic spectrum must be equal to the number of electrons,
we expect that the intensity for [Au147]−will show up at higher
energy.

V. CONCLUSIONS

In this work, we have developed and implemented a new
algorithm within the ADF code, to solve the TDDFT equations
in the space of the density fitting auxiliary basis set. The
method extracts the spectrum from the imaginary part of the
polarizability at any given photon energy, so the numerical
part consists to solve a non-homogeneous system of linear
algebraic equations, which can be managed by ScalaPACK
parallel library, avoiding the bottleneck of Davidson diagonal-
ization. The original idea, which makes the present scheme
very efficient, consists in the simplification of the double sum
over occupied-virtual pairs in the definition of the dielectric
susceptibility, allowing an easy calculation of such matrix as
a linear combination of constant matrices with photon energy
dependent coefficients. The method has been applied to very
different systems in nature and size (from H2 to [Au147]−)
in order to gain a global sensitivity about its accuracy and
efficiency. In all cases, the maximum deviations observed with
respect to ADF are below 0.2 eV, making the present algorithm
a well balanced compromise, sacrificing some accuracy in

favour of the efficiency and the capability to calculate the
spectrum up to high energy together with wide analysis possi-
bilities. In fact, the new algorithm has the merit not only to
calculate the spectrum at whichever photon energy (at variance
with the Casida formulation) but also to allow a deep analysis
of the results, in terms of TCM, Jacob plasmon scaling factor,
and induced perturbation analysis, which have been all im-
plemented. Further applications to large non symmetric metal
clusters are under study.

A possible extension of the method may include an auto-
matic selection of the fitting functions, which must be done by
the user at the moment.

It is worth noting that, although the point symmetry group
is only partially exploited in the present implementation, the
computational effort needed to treat large gold clusters has
proven to be even lower than by ADF, which exploits instead
the full symmetry. Therefore, we expect that the present
scheme would be very efficient to treat also large systems
with low symmetry, a typical situation met for metal clusters
protected by ligands. In summary, we believe that the present
method can represent a general and efficient way to apply
TDDFT to very large systems, allowing specific applications
on large metal clusters protected by ligands, which represents
a rapidly developing field where theory can help to simulate
optical properties of new materials and rationalize them in
terms of electronic structure.
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