6 research outputs found

    Evolution of dispersal distance: Maternal investment leads to bimodal dispersal kernels

    Get PDF
    Since dispersal research has mainly focused on the evolutionary dynamics of dispersal rates, it remains unclear what shape evolutionarily stable dispersal kernels have. Yet, detailed knowledge about dispersal kernels, quantifying the statistical distribution of dispersal distances, is of pivotal importance for understanding biogeographic diversity, predicting species invasions, and explaining range shifts. We therefore examine the evolution of dispersal kernels in an individual-based model of a population of sessile organisms, such as trees or corals. Specifically, we analyze the influence of three potentially important factors on the shape of dispersal kernels: distance-dependent competition, distance-dependent dispersal costs, and maternal investment reducing an offspring's dispersal costs through a trade-off with maternal fecundity. We find that without maternal investment, competition and dispersal costs lead to unimodal kernels, with increasing dispersal costs reducing the kernel's width and tail weight. Unexpectedly, maternal investment inverts this effect: kernels become bimodal at high dispersal costs. This increases a kernel's width and tail weight, and thus the fraction of long-distance dispersers, at the expense of simultaneously increasing the fraction of non-dispersers. We demonstrate the qualitative robustness of our results against variations in the tested parameter combinations

    Dynamic species classification of microorganisms across time, abiotic and biotic environments-A sliding window approach.

    Get PDF
    The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline can be applied in fields assessing species community dynamics, such as eco-toxicology, ecology and evolutionary ecology

    Its all about connections: hubs and invasion in habitat networks

    Get PDF
    International audienceDuring the early stages of invasion, the interaction between the features of the invaded landscape, notably its spatial structure, and the internal dynamics of an introduced population has a crucial impact on establishment and spread. By approximating introduction areas as networks of patches linked by dispersal, we characterised their spatial structure with specific metrics and tested their impact on two essential steps of the invasion process: establishment and spread. By combining simulations with experimental introductions of Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in artificial laboratory microcosms, we demonstrated that spread was hindered by clusters and accelerated by hubs but was also affected by small-population mechanisms prevalent for invasions, such as Allee effects. Establishment was also affected by demographic mechanisms, in interaction with network metrics. These results highlight the importance of considering the demography of invaders as well as the structure of the invaded area to predict the outcome of invasions
    corecore