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Abstract
1.	 Theoretical	models	pertaining	to	feedbacks	between	ecological	and	evolutionary	
processes	 are	prevalent	 in	multiple	biological	 fields.	An	 integrative	overview	 is	
currently	lacking,	due	to	little	crosstalk	between	the	fields	and	the	use	of	different	
methodological	approaches.

2.	 Here,	we	review	a	wide	range	of	models	of	eco-evolutionary	feedbacks	and	high-
light	their	underlying	assumptions.	We	discuss	models	where	feedbacks	occur	both	
within	and	between	hierarchical	levels	of	ecosystems,	including	populations,	com-
munities	and	abiotic	environments,	and	consider	feedbacks	across	spatial	scales.

3.	 Identifying	 the	 commonalities	 among	 feedback	models,	 and	 the	 underlying	 as-
sumptions,	helps	us	better	understand	the	mechanistic	basis	of	eco-evolutionary	
feedbacks.	Eco-evolutionary	feedbacks	can	be	readily	modelled	by	coupling	de-
mographic	 and	 evolutionary	 formalisms.	We	 provide	 an	 overview	 of	 these	 ap-
proaches	and	suggest	future	integrative	modelling	avenues.

4.	 Our	overview	highlights	that	eco-evolutionary	feedbacks	have	been	incorporated	
in	theoretical	work	for	nearly	a	century.	Yet,	this	work	does	not	always	include	the	
notion	of	rapid	evolution	or	concurrent	ecological	and	evolutionary	time	scales.	
We	 show	 the	 importance	 of	 density-	 and	 frequency-dependent	 selection	 for	
feedbacks,	as	well	as	the	importance	of	dispersal	as	a	central	linking	trait	between	
ecology	and	evolution	in	a	spatial	context.
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1  | INTRODUC TION

Feedbacks	are	relevant	to	many	biological	systems	and	are	central	to	
ecology	and	evolutionary	biology	(Robertson,	1991).	While	ecology	
aims	 to	understand	 the	 interactions	between	 individuals	and	 their	
environment,	evolution	refers	to	changes	in	allele	frequencies	over	
time.	In	the	past,	both	fields	have,	to	a	large	extent,	been	studied	in	
isolation.	Evolutionary	ecology	(e.g.	Roughgarden,	1979)	is	a	notable	
exception,	where	 links	 between	 ecology	 and	 evolution	 are	 key	 to	
empirical	and	theoretical	research.

One	 of	 the	 pioneering	 studies	 on	 feedbacks	 between	 ecology	
and	evolution	dates	back	to	Pimentel’s	work	on	“genetic	feedback”	
(Pimentel,	1961).	In	this	feedback,	frequencies	and	densities	of	dif-
ferent	 genotypes	 in	 a	host	population	 shift	 the	overall	 population	
density.	This	change	 in	density	modifies	selection	on	the	host	and	
consequently	shifts	genotype	frequencies.	Another	early	feedback	
concept	of	great	importance	is	density-dependent	selection	(Chitty,	
1967)	where	the	strength	of	selection	changes	due	to	changing	pop-
ulation	 densities	 and	 vice	 versa	 (crowding;	 see	 also	 Clarke,	 1972;	
Travis,	Leips,	&	Rodd,	2013).

In	recent	years,	the	recognition	that	evolution	can	be	rapid	and	
occur	 on	 similar	 time	 scales	 as	 ecology	 (Hairston,	 Ellner,	 Geber,	
Yoshida,	&	Fox,	2005;	Hendry	&	Kinnison,	1999)	has	prompted	re-
search	 at	 the	 interface	between	 the	 two	disciplines	 (often	 termed	
“eco-evolutionary	 dynamics”;	 Hendry,	 2017)	 and	 renewed	 the	
interest	 in	 feedbacks	 between	 ecological	 and	 evolutionary	 pro-
cesses	[“eco-evolutionary	feedbacks”	(EEF);	see	Figure	1a;	Ferrière,	
Dieckmann,	&	Couvet,	2004;	Pelletier,	Garant,	&	Hendry,	2009;	Post	
&	Palkovacs,	 2009].	 Eco-evolutionary	 feedbacks	 involve	 situations	
where	an	ecological	property	influences	evolutionary	change,	which	
then	feeds	back	to	an	ecological	property,	or	vice	versa.	Classical	em-
pirical	examples	include	that	predation	(ecological	property)	can	lead	
to	 selection	 on	 defence	 traits	 in	 prey	 (evolutionary	 change)	which	
in	turn	feeds	back	on	predator–prey	dynamics	and	shifts	the	phase	
of	 predator–prey	oscillations	 (feedback	on	ecological	 property;	 re-
viewed	in	Hiltunen,	Hairston,	Hooker,	Jones,	&	Ellner,	2014).

Contemporary	 theory	 about	EEFs	builds	on	many	of	 the	 same	
fundamental	ideas	established	by	Pimentel	(1961)	and	Chitty	(1967),	
and	feedbacks	remain	central	to	the	development	of	theory	in	evo-
lutionary	 ecology	 (for	 recent	 overview	 see	 Lion,	 2018;	 McPeek,	
2017).	Such	feedbacks	have	been	found	to	generate	spatial	variation	
in	biotic	interactions	(geographic	mosaic	of	coevolution;	Thompson,	
2005),	impact	population	regulation	and	community	dynamics	(e.g.,	
Abrams	 &	Matsuda,	 1997;	 Patel,	 Cortez,	 &	 Schreiber,	 2018),	 and	
lead	 to	 species	 coexistence	 via	 stabilizing	mechanisms	 (Kremer	 &	
Klausmeier,	 2017),	 to	 name	 but	 a	 few	 examples.	 Besides	 theoret-
ical	work,	 empirical	 and	 especially	 experimental	 tests	 of	 eco-evo-
lutionary	 dynamics	 and	 feedbacks	 have	 increased	 recently	 (e.g.,	
Becks,	Ellner,	Jones,	&	Hairston,	2010,	2012;	Brunner,	Anaya-Rojas,	
Matthews,	&	Eizaguirre,	2017;	Schoener,	2011;	Turcotte,	Reznick,	&	
Hare,	2011;	Yoshida,	Jones,	Ellner,	Fussmann,	&	Hairston,	2003),	and	
have	strongly	contributed	to	our	understanding	on	EEFs.

The	increasing	evidence	on	the	importance	of	EEFs	has	resulted	
in	 a	 series	 of	 existing	 literature	 reviews	 (e.g.	 Bailey	&	 Schweitzer,	
2016;	Fussmann,	Loreau,	&	Abrams,	2007;	Hendry,	2017;	Pelletier	
et	al.,	2009;	Post	&	Palkovacs,	2009;	Shefferson	&	Salguero-Gómez,	
2015;	 Van	 Nuland	 et	al.,	 2016).	 These	 reviews,	 however,	 have	
been	rather	at	the	intersection	of	empirical	and	theoretical	studies	
(Fussmann	et	al.,	2007),	focus	on	particular	systems	(e.g.,	plant–soil	
feedbacks	 Bailey	 &	 Schweitzer,	 2016;	 terHorst	 &	 Zee,	 2016;	 Van	
Nuland	 et	al.,	 2016)	 or	 very	 broadly	 discuss	 eco-evolutionary	 dy-
namics	 (e.g.	 Hendry,	 2017).	 None	 of	 these	 overviews	 include	 the	
theoretical	 literature	 in	 its	 full	 diversity,	 neither	 do	 they	 explicitly	
compare	different	modelling	frameworks	for	studying	EEFs.

Here,	 we	 provide	 an	 overview	 of	 theoretical	 work	 that	 in-
cludes	EEFs	(for	a	comprehensive	overview	of	empirical	work	see	
Hendry,	2017)	as	an	attempt	to	provide	a	conceptual	unification	
that	furthers	our	general	understanding	of	eco-evolutionary	feed-
back	 theory.	 While	 this	 review	 is	 focused	 on	 theoretical	 work,	
the	insights	learnt	are	valuable	for	testing	predictions	empirically.	
Currently,	the	relevant	theory	varies	in	methodological	approaches	
(e.g.,	 quantitative	 genetics	 and	 adaptive	dynamics)	 and	between	
thematic	 subdisciplines	 (e.g.,	 evolutionary	 rescue	 or	 suicide	 and	
niche	construction)	with	mostly	subtle,	and	at	times	semantic,	dis-
tinctions	between	them	(Matthews	et	al.,	2014).	In	an	attempt	to	
bridge	these	boundaries,	we	organize	our	nonexhaustive	overview	
around	two	axes	of	biological	complexity:	community	(from	single	
to	multi-species	models)	and	spatial	complexity	(from	nonspatial	to	
spatially	explicit	models).	Our	review	focuses	specifically	on	feed-
backs	and	discusses	EEFs	 in	a	theoretical	context	across	a	broad	

F I G U R E  1  Eco-evolutionary	feedbacks	(EEF).	(a)	Generic	
representation	of	feedbacks	between	ecology	(grey	box)	and	
evolution	(green	box)	implying	that	the	effect	of	an	ecological	
property	(e.g.,	demography)	can	be	traced	to	evolutionary	change	
(e.g.,	shift	in	allele	frequencies;	eco-to-evo)	and	back	again	to	an	
ecological	property	(evo-to-eco)	or	vice	versa.	(b)	Examples	of	
demographic	(ecological)	and	evolutionary	modelling	formalisms	that	
can	be	coupled	to	analyse	EEFs.	Of	course,	ODEs	and	IBMs	can	be	
used	to	model	evolution,	but,	strictly	speaking,	they	will	make	use	of	
some	of	the	evolutionary	modelling	frameworks,	like	QG	or	genetic	
algorithms	(GA),	to	do	so.	The	box	types	and	colours	will	be	used	
throughout	the	text	to	imply	ecological	or	evolutionary	aspects,	
respectively.	For	a	detailed	explanation	of	abbreviations,	see	Box	1
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scale	of	biological	 levels	with	a	strong	methodological	focus.	We	
summarize	available	formalisms	used	to	study	EEFs	theoretically,	
highlight	 their	 underlying	 assumptions	 and	 give	 an	 overview	 of	
existing	 theoretical	work	 to	highlight	 research	gaps.	We	use	our	
synthesis	to	expand	the	generic	feedback	loop	shown	in	Figure	1a	
and	 to	 suggest	 a	 more	 mechanistic	 representation.	 Lastly,	 we	
make	suggestions	for	future	directions	and	ways	to	overcome	the	
barriers	that	have	so	far	prevented	synthesis	of	theory	in	this	field.

2  | FORMALISMS USED FOR MODELLING 
EEFS

Theoreticians	use	a	variety	of	demographic	models	to	study	the	in-
terplay	between	ecology	and	evolution,	including	classical	ordinary	
differential	equation	models	(ODEs,	e.g.,	Lotka–Volterra	equations,	
for	 explanations	 and	 abbreviations	 of	 recurring	 terms	 see	 Box	1),	

structured	models	(matrix	models,	physiologically	structured	popu-
lation	models,	integral	projection	models)	or	stochastic	agent-based	
models.	By	introducing	genetic	variation	(via	standing	genetic	vari-
ation	 and/or	mutations)	 in	one	or	 several	 populations,	 the	models	
can	capture	EEFs	 (Figure	1b).	Because	such	models	are	not	always	
analytically	tractable,	various	formalisms,	such	as	adaptive	dynamics	
(AD)	and	quantitative	genetics	(QG),	have	been	developed	to	further	
our	 understanding	 of	 EEFs.	 Typically,	 these	 approaches	 take	EEFs	
into	account	 through	simplifying	assumptions	on	the	time	scale	of	
ecological	and	evolutionary	processes	and	on	the	mutation	regime	
(reviewed	in	Lion,	2018).

Models	 using	AD	 rely	 on	 a	 separation	 of	 time	 scales	 between	
ecological	and	evolutionary	dynamics.	Specifically,	these	models	as-
sume	 that	mutations	 are	 so	 rare	 that	 the	 ecological	 community	 is	
always	on	its	attractor,	so	that	the	evolutionary	dynamics	take	the	
form	of	a	temporal	sequence	of	allele	substitutions	 (i.e.,	mutation-
limited	evolution).	The	success	of	a	mutant	allele	is	then	measured	

BOX 1 Explanation of terms and abbreviations

Adaptive dynamics (AD):	AD	is	a	mathematical	formalism	that	provides	a	dynamical	extension	of	classical	optimization	approaches	and	
evolutionary	game	theory	to	include	density	and	frequency	dependence	(Diekmann,	2004;	Waxman	&	Gavrilets,	2005).	This	makes	eco-
evolutionary	feedbacks	central	to	AD.
Dispersal:	Dispersal	is	the	movement	of	individuals	away	from	their	parents	with	potential	consequences	for	gene	flow	(Clobert	et	al.,	
2012).
Eco‐evolutionary feedback (EEF):	A	reciprocal	interaction	between	an	ecological	and	evolutionary	processes	(see	Figure	1a).	The	ecological	
property	influenced	by	evolutionary	change	need	not	be	the	same	ecological	property	that	led	to	the	evolutionary	change	(narrow	and	
broad	sense	feedbacks	sensu	Hendry,	2017).
Evolutionary rescue (ER) and suicide (ES):	ER	is	the	idea	that	a	population	can	avoid	extinction	through	rapid	adaptation	(Gonzalez	et	al.,	
2013).	By	contrast,	ES	is	the	process	by	which	evolution	drives	a	population	beyond	its	viability	region,	eventually	causing	extinction	
(Ferriere,	2000).
Evolutionary game theory:	A	branch	of	mathematics	that	studies	the	interactions	between	individuals	in	which	the	strategy	exerted	by	an	
individual	has	a	pay-off	 that	depends	on	both	 the	 individual’s	 strategy	and	the	strategies	of	 the	other	 individuals	 involved	 (McGill	&	
Brown,	2007).
Genetic algorithm (GA):	A	type	of	optimization	algorithm	using	techniques	from	evolutionary	biology	(i.e.,	mutation,	inheritance,	selection	
and	recombination)	to	find	an	optimized	solution	to	a	problem	(e.g.,	Fraser,	1957).
Individual‐based model (IBM):	IBM	(also	agent-based	model,	ABMs)	are	bottom-up	models	in	which	a	(meta)population	or	(meta)community	
is	modelled	as	a	number	of	discrete	interacting	individuals,	in	which	each	individual	is	characterized	by	a	set	of	state	variables	(location,	
physiological	or	behavioural	traits).	The	interactions	between	individuals	result	in	(meta)population	and	(meta)community	or	(meta)food	
web	dynamics	(DeAngelis	&	Mooij,	2005;	Grimm,	1999).
Integral projection model (IPM):	IPMs	describe	the	dynamics	of	a	population	by	projecting	its	size	or	trait	distribution	through	time	using	a	
kernel	distribution	 that	 connects	 individual-level	vital	 rates	 such	as	 survival,	 reproduction	and	development	 to	population-level	pro-
cesses.	IPMs	can	be	coupled	with	AD	or	QG	approaches	(Rees	&	Ellner,	2016).
Lotka‐Volterra model (LV):	The	LV	model	(named	after	Alfred	Lotka	and	Vito	Volterra)	consists	of	ODEs	describing	predator	and	prey	dy-
namics.	Modifications	of	the	basic	model	include,	for	example,	the	Rosenzweig-MacArthur	model.
Matrix population model:	Formalizes	the	life	cycle	of	a	population	in	a	matrix	using	either	discrete	life	stages	(classical	matrix	population	
models;	Caswell,	2006)	or	a	continuous	trait	such	as	body	size	(see	“integral	projection	model”	above).
Metapopulation and metacommunity:	A	metapopulation	sensu	 lato	 is	a	spatially	structured	population,	connected	by	dispersal	 (Hanski,	
1999;	Harrison	&	Hastings,	1996).	Similarly,	a	metacommunity	is	a	spatially	structured	community,	connected	by	dispersal	(Leibold	et	al.,	
2004).
Quantitative genetics (QG):	QG	studies	the	genetic	basis	of	phenotypic	variation,	with	a	focus	on	the	dynamics	of	continuous	trait	distribu-
tions	(Lynch	&	Walsh,	1998).
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by	its	invasion	fitness	(Geritz,	Kisdi,	Meszena,	&	Metz,	1998;	Metz,	
Nisbet,	&	Geritz,	1992).	The	separation	of	time	scales	between	ecol-
ogy	 and	 evolution,	 however,	 does	 not	mean	 that	 there	 is	 no	 EEF.	
The	 feedback	 is	materialized	 by	 the	 fact	 that	 the	 invasion	 fitness	
of	a	mutant	allele	depends	on	the	ecological	conditions	created	by	
the	 resident	community.	 In	 fact,	 the	concept	of	a	 “feedback	 loop”	
between	 ecology	 and	 evolution	 has	 been	 central	 in	 the	 develop-
ment	of	AD	(Ferrière	&	Legendre,	2012).	Nevertheless,	the	focus	on	
ecological	attractors	may	be	a	 limitation.	Recent	work	by	Chesson	
(2017)	suggests	that	the	replacement	of	ecological	attractors	with	
time-dependent	 environmental	 functions	 to	which	 the	 population	
converges	may	represent	a	way	forward.

Quantitative	genetics	models,	by	contrast,	start	from	a	different	
perspective	and	explicitly	consider	evolution	resulting	from	existing	
genetic	variation.	For	a	given	quantitative	trait,	these	models	track	
the	dynamics	of	different	moments	of	the	trait	distributions	that	are	
central	to	eco-evolutionary	dynamics	(mean,	variance,	etc.;	Chevin,	
Cotto,	&	Ashander,	2017).	Often,	additional	assumptions	have	to	be	
made,	to	allow	for	simplifications.	Many	QG	models	assume	that	the	
trait	distribution	is	Gaussian	and	tightly	clustered	around	the	mean	
(small	variance	or	weak	selection	approximation).	In	that	case,	it	be-
comes	possible	to	approximate	the	ecological	dynamics	of	the	focal	
population	as	if	all	 individuals	had	the	mean	trait	value,	and	to	un-
derstand	 the	change	 in	mean	 trait	 in	 relation	 to	a	 selection	gradi-
ent,	where	 the	 selection	gradient	 itself	depends	on	 the	ecological	
dynamics	(e.g.,	Abrams	&	Matsuda,	1997;	Lion,	2018;	Luo	&	Koelle,	
2013).	This	allows	the	coupling	of	ecology	and	evolution,	similarly	to	
AD,	with	the	difference	that	ecological	dynamics	do	not	have	to	be	
at	equilibrium	(no	separation	of	time	scales;	see	Lande,	2007;	Lande,	
Engen,	&	Saether,	2009,	for	the	impact	of	environmental	variation).	
Therefore,	 QG	 models	 can	 focus	 on	 short-term	 dynamics,	 which	
makes	 them	 potentially	 more	 applicable	 to	 experiments	 or	 field	
studies	where	rapid	evolution	is	a	key	process.

On	the	demographic	 (ecological)	side,	ODEs,	matrix	population	
models	(e.g.,	integral	projection	models—IPMs)	and	individual-based	
models	 (IBMs)	 have	 been	 used	 to	 study	 population	 dynamics,	 but	
have	also	been	used	to	study	simultaneous	change	in	ecological	(e.g.,	
population	size)	and	evolutionary	parameters	(e.g.,	strength	of	selec-
tion),	without	explicitly	using	the	term	EEF	(see	e.g.,	Caswell,	2006).	
However,	 ODEs	 and	 matrix	 population	 models	 can	 be	 combined	
with	 AD	 and	 QG	 approaches	 to	 investigate	 EEFs	 (Rees	 &	 Ellner,	
2016).	 Individual-based	models	may	 rely	 on	 genetic	 algorithms	 to	
capture	evolutionary	dynamics	(Fraser,	1957).	In	addition,	IBMs	lend	
themselves	very	easily	to	the	incorporation	of	complexities	such	as	
stochasticity,	 spatial	 structure	 and	 kin	 competition	 (e.g.	 Poethke,	
Pfenning,	&	Hovestadt,	 2007),	which	 are	 often	 difficult	 to	 handle	
using	analytical	models.

While	all	of	 these	approaches	can	be	used	 to	answer	a	 similar	
question,	there	are	often	barriers	to	integration,	or	stemming,	for	ex-
ample,	from	the	specific	vocabulary	of	the	field.	Nevertheless,	there	
has	been	some	recent	progress	towards	synthesis	(Abrams,	Harada,	
&	Matsuda,	1993;	Day,	2005;	Day	&	Gandon,	2007;	Lion,	2018).	For	
example,	it	has	been	shown	that	as	additive	genetic	variance	in	QG	

models	 becomes	 very	 small,	 results	will	 converge	 to	 those	 of	 AD	
models,	which	provides	a	direct	link	between	these	two	methodol-
ogies	 (e.g.,	Kremer	&	Klausmeier,	2013).	As	another	example,	Lion	
(2018)	suggested	considering	the	organism–environment	feedback	
as	central	 to	eco-evolutionary	models.	 In	 this	 formalism,	 the	envi-
ronmental	vector	captures	both	focal	population	densities,	as	well	
as	external	variables	such	as	abiotic	environments,	and	resources.

Beyond	the	scope	of	this	review	are	complex	adaptive	systems	
models	 such	 as	 Bruggeman	 and	 Kooijman	 (2007)	 or	 Leibold	 and	
Norberg	 (2004),	 to	 name	 but	 two	 examples.	 These	 models	 allow	
for	dynamics	similar	to	trait	evolution	and	simultaneously	consider	
large	numbers	of	species	with	phenotypes	finely	spaced	along	one	
or	more	trait	axes.	We	next	provide	a	general	overview	on	models	
including	EEFs	and	their	results	starting	from	populations	to	commu-
nities	to	end	with	ecosystems	and	food	webs.

3  | EEFS WITHIN POPUL ATIONS

Many	theoretical	studies	have	analysed	EEFs	within	a	single	popu-
lation	 in	 a	 temporal	 or	 spatial	 setting.	 In	 single-species	 nonspatial	
settings,	 EEFs	 are	usually	 considered	between	 changes	 in	popula-
tion	size	and	changes	in	heritable	traits.	In	a	spatial	setting,	EEFs	can	
occur	between	local	population	size	and	local	trait	values,	but	also	
among	patches	between	regional	(meta)population	size	and	local	or	
regional	trait	values.	In	addition,	landscape	structure	(topology,	con-
nectivity)	might	influence	local	EEFs,	but	also	induce	feedbacks	on	a	
regional	scale.	This	is	because	dispersal	(demography)	and	gene	flow	
(population	genetics)	are	intrinsically	linked.

3.1 | Feedbacks in single populations

Feedbacks	over	time	can	be	intrinsic	to	the	population,	when	it	oc-
curs	between	population	density	and	trait	values,	or	extrinsic,	when	
it	occurs	between	the	availability	of	resources	and	trait	values.	For	
example,	 a	 quantitative	 trait	 subject	 to	 density-dependent	 or	 fre-
quency-dependent	selection	 (eco-to-evo)	can	 influence	population	
growth	 rate	 (evo-to-eco;	 Engen,	 Lande,	 &	 Sӕther,	 2013;	 Lande,	
2007;	Travis	et	al.,	 2013).	Density-	or	 frequency-dependent	 selec-
tion	implies	that	an	individual’s	fitness	is	not	only	determined	by	its	
trait	value,	but	also	by	the	population	density	or	by	the	proportion	
of	certain	genotypes	 (Clarke,	1972;	Travis	et	al.,	2013).	 In	the	case	
of	density-dependent	selection,	changing	population	densities	shift	
the	selection	pressure	favouring	different	genotypes	because	of	dif-
ferential	competitive	ability.	 In	 turn,	changing	competitive	abilities	
create	 varying	 ecological	 conditions	 leading	 to	 changes	 in	 density	
(Engen	et	al.,	2013;	Lande,	2007;	MacArthur,	1962).

Lively	 (2012)	 used	 a	 one-locus	 two-allele	 genetic	 system	 (QG	
with	 two	 types)	 to	 illustrate	 a	 feedback	 between	population	 den-
sity	 and	 allele	 frequency	 change	 assuming	 density-dependent	 se-
lection	 (Figure	2a).	 Similarly,	 Lande	 (2007)	 and	 Engen	 et	al.	 (2013)	
used	QG	models	linking	the	evolution	of	a	quantitative	trait	to	pop-
ulation	growth,	strength	of	density	dependence	and	environmental	
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stochasticity.	These	authors	found	that	in	a	constant	environment,	
evolution	will	maximize	mean	 fitness	 and	mean	 relative	 fitness	 in	
the	population	which	may	change	when	population	sizes	 fluctuate	
(Sӕther	&	Engen,	2015).	Technically,	 the	evolutionary	 response	of	
the	 population	 due	 to	 a	 changing	 environment	 in	 these	models	 is	
described	 using	 the	 phenotypic	 selection	 differential	 (accounting	
for	individual	survival	and	fecundity,	but	not	inheritance)	or	in	terms	
of	the	selection	gradient	(Lande	et	al.,	2009;	Leon	&	Charlesworth,	
1978).

The	assumption	of	frequency-dependent	selection	is	particularly	
relevant	in	the	context	of	sexual	selection	and	mate	choice	(Alonzo	
&	Sinervo,	2001).	Evolutionary	game	theory	can	be	used	to	model	a	
population	consisting	of	female	and	male	morphs	where	female	mate	
preference	depends	on	the	total	population	size	(density-dependent	
selection),	but	also	on	female	morph	frequency	(frequency-depen-
dent	selection;	Figure	2b).	This	leads	to	an	EEF	between	population	
size	and	morph	frequencies	via	density-	and	frequency-dependent	
selection	(eco-to-evo)	and	via	fitness	differences	in	the	morphs	(evo-
to-eco;	reviewed	in	Smallegange,	Rhebergen,	Van	Gorkum,	Vink,	&	
Egas,	 2018).	 Very	 similar	mechanisms	 have	 been	 discussed	 in	 the	
context	 of	 the	 evolution	 of	 cooperation	 (e.g.,	 Gokhale	 &	 Hauert,	
2016;	Lehtonen	&	Kokko,	2012).	For	example,	ecological	conditions,	
such	as	resource	limitation	and	variability,	may	select	for	the	evolu-
tion	of	cooperation	 (eco-to-evo),	which	can	then	feed	back	on	de-
mography	 leading	to	 increased	population	sizes	 (“supersaturation,”	

Fronhofer,	 Liebig,	Mitesser,	 &	 Poethke,	 2018;	 Fronhofer,	 Pasurka,	
Mitesser,	&	Poethke,	2011).

Finally,	 a	 classical	 EEF	 over	 time	 is	 often	 termed	 evolutionary	
rescue	(ER,	see	Box	1;	Gomulkiewicz	&	Holt,	1995;	Gonzalez,	Ronce,	
Ferriere,	&	Hochberg,	2013;	Lynch,	1993).	Evolutionary	rescue	mod-
els	 have	either	 used	 a	QG	approach,	 focusing	on	 the	population’s	
capacity	to	track	gradually	changing	optima	in	time	(Burger	&	Lynch,	
1995;	Lande	&	Shannon,	1996)	or	space	(Pease,	Lande,	&	Bull,	1989;	
Polechová,	 Barton,	 &	 Marion,	 2009;	 Uecker,	 Otto,	 &	 Hermisson,	
2014)	 or	 a	 single	mutation	 approach	 in	which	 a	 population	 is	 ex-
posed	 to	a	 sudden	severe	environmental	 change	 (Gomulkiewicz	&	
Holt,	1995;	Orr	&	Unckless,	2014;	Uecker,	2017).	Interestingly,	while	
ER	leads	to	population	persistence,	adaptive	evolution	might	also	re-
sult	in	evolutionary	trapping	or	suicide	(ES,	Ferriere,	2000;	Parvinen	
&	Dieckmann,	2013).	In	the	latter,	trait	change	drastically	degrades	
population	 viability	 leading	 to	 extinction	 (Engen	 &	 Sӕther,	 2017;	
Ferrière	&	Legendre,	2012)	because	selection	acting	at	the	individ-
ual	level	does	not	necessarily	optimize	population-level	properties.	
Whether	the	result	is	ER	or	ES,	these	models	demonstrate	that	EEFs	
can	be	of	applied	 relevance	 to	conservation,	 for	example.	 In	 sum-
mary,	feedbacks	over	time	are	usually	mediated	by	intrinsically	(den-
sity-/frequency-dependent	selection)	or	extrinsically	(environment)	
changing	selection	pressures.	The	consequences	of	these	feedbacks	
may	be	positive	 (e.g.,	 increased	densities	and	survival)	or	negative	
(ES)	at	the	population	level.

3.2 | Feedbacks in spatially structured populations

Spatial	models	allow	for	EEFs	between	local	demography	or	metap-
opulation	conditions	and	an	evolving	trait.	The	feedback	can	be	mod-
ified	by	external	properties	such	as	patch	dynamics	(colonization	and	
extinction	rates;	Hanski	&	Mononen,	2011)	or	 landscape	structure	
(Fronhofer	&	Altermatt,	2017;	Kubisch,	Winter,	&	Fronhofer,	2016).	
In	models	with	discrete	habitat	patches,	dispersal	 is	a	central	 trait	
connecting	 local	 patches	 and	 can	 have	 important	 effects	 on	 both	
ecological	 (Clobert,	Baguette,	Benton,	&	Bullock,	2012)	and	evolu-
tionary	(e.g.,	can	limit	or	favour	local	adaptation;	Lenormand,	2002;	
Nosil,	 Funk,	&	Ortitz-Barrientos,	 2009;	 Räsänen	&	Hendry,	 2008)	
processes.	The	evolution	of	dispersal	 likely	 is	 the	most	 frequently	
studied	example	of	an	EEF	in	fragmented	landscapes	(Legrand	et	al.,	
2017).

In	 a	 spatial	 model	 without	 dispersal	 evolution,	 Gomulkiewicz	
and	Holt	(1995)	show	that	ER	can	be	strongly	hampered	by	stochas-
ticity,	 for	 example,	 as	 a	 consequence	 of	 low	 population	 sizes	 (see	
Gomulkiewicz,	Holt,	&	Barfield,	1999;	for	another	example	of	spatial	
ER).	 Interestingly,	 the	probability	 of	 rescue	 can	be	 a	 nonmonotonic	
function	of	migration	rates	(Uecker	et	al.,	2014).	If	dispersal	is	allowed	
to	evolve	(Ronce,	2007),	it	may	be	modelled	as	a	discrete	trait	with	dis-
persing	and	resident	genotypes	(e.g.,	Hanski	&	Mononen,	2011),	as	a	
quantitative	trait	(Hanski,	2011),	or	even	as	an	evolving	reaction	norm	
(Poethke	 &	Hovestadt,	 2002;	 Travis	 &	Dytham,	 1999;	 for	 an	 over-
view	on	the	genetics	of	dispersal	and	how	dispersal	 is	 incorporated	
into	models,	see	Saastamoinen	et	al.,	2018).	For	example,	combining	

F I G U R E  2  Examples	of	studies	in	which	feedbacks	occur	in	
a	single-species	nonspatial	setting.	(a)	In	Lande	et	al.	(2009)	and	
Lively	(2012)	population,	density	determines	the	selection	pressure,	
resulting	in	evolution	of	some	quantitative	trait	(Lande	et	al.,	
2009)	or	shifts	in	discrete	genotype	frequencies	(Lively,	2012).	
(b)	In	Alonzo	and	Sinervo	(2001)	not	only	population	density	but	
also	the	frequency	of	morphs	determine	mate	choice,	which	in	
turn	determines	the	outcome	of	morph	frequencies	in	the	next	
generation	influencing	the	trait	of	mate	choice	again
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stochastic	patch	occupancy	models	with	description	of	mean	pheno-
typic	changes	in	local	populations,	Hanski	and	Mononen	(2011)	stud-
ied	an	EEF	between	patch	dynamics	(colonization	and	extinction)	and	
the	frequency	of	a	disperser	genotype	(for	details	see	Figure	3a).

In	 spatial	 models,	 EEFs	 can	 link	 processes	 at	 different	 spatial	
scales.	For	instance,	Poethke,	Dytham,	and	Hovestadt	(2011)	show	
that	 the	selective	 increase	 in	patch	size,	 for	example,	as	a	conser-
vation	measure,	can	select	against	dispersal	(eco-to-evo)	which	de-
creases	re-colonization	probabilities	and	can	lead	to	ES	(evo-to-eco).	
Evolution	 can	 also	 rescue	 populations	 from	 extinction	 which	 will	
depend	 on	 the	 rate	 of	 environmental	 change	 and	 landscape	 set-
tings:	 ER	may	 be	 found	when	 environmental	 changes	 are	 not	 too	
fast	 (Schiffers,	Bourne,	Lavergne,	Thuiller,	&	Travis,	2013),	but	 the	
contrary	has	also	been	found	(Boeye,	Travis,	Stoks,	&	Bonte,	2013).	
Similarly,	 in	 a	 range	 expansion	 context,	 Burton,	 Pillips,	 and	 Travis	
(2010)	and	Fronhofer	and	Altermatt	(2015)	showed	that	the	ecolog-
ical	process	of	a	range	expansion	can	select	for	increased	dispersal	
at	range	fronts	(Travis	&	Dytham,	2002)	and	may	feed	back	on	the	
distribution	of	population	densities	across	the	range	via	life-history	
trade-offs.	The	 importance	of	 landscape	 structure	 for	EEFs	 is	 laid	
out	 in	Fronhofer	and	Altermatt	 (2017)	 (Figure	3b).	Taken	 together,	
spatial	models	may	consider	 local	 adaptation	 to	abiotic	 conditions	
as	a	heritable	trait	and	fix	dispersal	or	may	consider	dispersal	as	an	
evolving	trait.	Altogether,	the	studies	show	that	dispersal	is	an	excel-
lent	candidate	to	link	ecology	(demography	from	a	single	population	
or	metapopulation)	and	evolution,	making	dispersal	central	to	EEFs.

4  | EEFS INVOLVING T WO SPECIES

In	multi-species	systems,	EEFs	can	be	mediated	by	intra-	and	inter-
specific	 densities	 that	 affect	 fitness	 and	 trait	 distributions	 (Travis	
et	al.,	2013).	In	the	following,	we	consider	four	major	categories	of	
two-species	 interactions:	 interspecific	 competition,	 predator–prey,	
parasite–host	and	mutualistic	interactions.

4.1 | Interspecific competition

Interspecific	 competition	 is	 a	 reciprocal	 interaction	 for	 a	 shared	
limiting	 resource	 (Dhondt,	1989),	 such	as	 food.	 In	 this	 interaction,	
the	 competing	 species	 can	evolve	different	 niches	 in	order	 to	 co-
exist	 (Abrams,	1986;	Brown	&	Wilson,	1956;	Taper	&	Case,	1992).	
Many	 studies	 have	 shown	 that	 competition-induced	 selection	 can	
result	in	adaptive	divergence	through	ecological	character	displace-
ment	 (Brown	&	Wilson,	1956;	Schluter,	2000;	Slatkin,	1980;	Taper	
&	Case,	 1992).	However,	 other	 studies	 have	 shown	 that	 competi-
tion	 could	 also	 lead	 to	 functional	 convergence	of	 the	 competitors	
(Abrams,	1990;	 terHorst,	Miller,	&	Powell,	2010).	 In	 these	models,	
EEFs	may	 occur	 because	 competing	 species	 exert	 selection	 pres-
sures	 that	 result	 in	 trait	 evolution	 (eco-to-evo)	 that	 might	 alter	
selection	 pressures	 on	 both	 species	 (evo-to-eco;	 e.g.,	 Vasseur,	
Amarasekare,	Rudolf,	&	Levine,	2011;	Figure	4a).	The	earlier	models	
of	character	displacement	assume	fixed	variance	and	often	assume	
Gaussian	shapes	for	the	species’	character	distribution	(e.g.,	Slatkin,	
1980).	Recently,	Sasaki	and	Dieckmann	(2011)	suggested	the	oligo-
morphic	approximation	as	a	way	to	describe	the	QG	of	an	asexually	
reproducing	population	that	consists	of	multiple	morphs.	Sasaki	and	
Dieckmann	(2011)	then	used	this	approach	to	gain	a	more	detailed	
understanding	on	 the	dynamics	of	evolutionary	branching	 in	a	 re-
source	competition	model	and	showed,	among	other	aspects,	how	
to	obtain	threshold	conditions	for	evolutionary	branching	and	how	
mutations	affect	these	conditions.

Models	 on	 interspecific	 competition	 include,	 for	 example,	
Dieckmann	and	Doebeli	(1999).	This	study	used	an	IBM,	in	which	the	
evolving	 trait	 determines	 the	 carrying	 capacity	 (competition),	 and	
in	which	 individuals	survive	and	die	via	density	and	frequency	de-
pendence	giving	rise	to	a	feedback	between	density	and	trait	evolu-
tion,	resulting	in	speciation	via	evolutionary	branching.	The	authors	
showed	that	evolution	of	assortative	mating	can	lead	to	reproductive	
isolation,	resulting	in	increased	diversity	and	that	nonrandom	mating	
is	a	prerequisite	for	evolutionary	branching	(see	also	Thibert-Plante	
&	Hendry,	2009).	In	a	similar	model,	Aguilée,	Claessen,	and	Lambert	
(2013)	found	that	landscape	structure	highly	influences	the	outcome	
of	diversity	resulting	from	underlying	dynamics	of	competition	and	
assortative	mating.	The	latter	study	used	an	IBM	assuming	density-
dependent	resource	competition	and	stronger	competition	between	
individuals	with	similar	trait	values,	 inducing	frequency-dependent	
selection	and	considered	traits	linked	to	resource	utilization	and	to	
mate	choice.	Last,	a	model	by	terHorst	et	al.	(2010)	found	that	evo-
lutionary	 convergence	 could	 occur	 in	 a	multi-species	model	when	
less	 resources	 than	species	were	present	and	when	the	 intra-	and	

F I G U R E  3  Examples	of	studies	with	spatial	feedbacks.	(a)	Study	
by	Hanski	(2011)	and	Hanski	and	Mononen	(2011)	where	patch	
dynamics	driven	by	colonization	and	extinction	might	influence	
disperser	frequency	(Hanski	&	Mononen,	2011)	or	shifts	mean	
dispersal	rate	(Hanski,	2011),	which	in	turn	influences	patch	
dynamics.	(b)	Study	by	Fronhofer	and	Altermatt	(2017)	in	which	
landscape	topology	influences	dispersal	evolution,	which	in	turn	
influences	colonization	probabilities	and	metapopulation	dynamics	
(occupancy,	turnover,	genetic	structure,	global	extinction	risk)

(a)

(b)
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interspecific	 competition	 coefficients	 were	 equal.	 In	 this	 model,	
the	 rate	 of	 competitive	 exclusion	 slows	 down	 as	 species	 become	
more	similar	to	one	another	(evo-to-eco),	giving	species	more	time	
to	evolve	(eco-to-evo).	In	summary,	prominent	examples	of	EEFs	in	
two-species	competitive	systems	 focus	on	character	displacement	
and	potentially	speciation.	While	analytical	models	using	ODE	and	
the	AD	framework	are	well	established	(see	e.g.,	Kisdi,	1999),	studies	
on	two-species	interactions	often	make	use	of	IBMs	combined	with	
GA	to	include	a	relatively	high	level	of	biological	complexity.

4.2 | Predator–prey interactions

In	 a	 predator–prey	 interaction,	 one	 species	 acts	 as	 a	 preda-
tor	 feeding	 on	 the	 other	 species	 serving	 as	 prey.	 EEFs	 in	

predator–prey	systems	imply	that	predator	densities	may	induce	
trait	evolution,	for	example,	in	prey	defence	(eco-to-evo)	result-
ing	 in	consequent	shifts	 in	prey	and	predator	densities	 (evo-to-
eco;	Figure	4b).	Many	studies	have	found	that	rapid	evolution	in	
prey	defence	due	to	shifting	predator	abundances	results	in	an-
tiphase	cycles	rather	than	1/4-lag	cycles	predicted	by	non-evo-
lutionary	models	(Becks	et	al.,	2010;	Yoshida	et	al.,	2003,	2007).	
Additionally,	feedbacks	can	stabilize	or	destabilize	predator–prey	
dynamics	 depending	 on	 genetic	 variation	 and	 trade-off	 shapes	
(Abrams,	2000;	Abrams	&	Matsuda,	1997;	Cortez,	2016;	Cortez	
&	Ellner,	2010).

Predator–prey	 dynamics	 have	 been	 extensively	 studied	 using	
models	of	trait	evolution	of	the	prey	(e.g.	Abrams	&	Matsuda,	1997;	
Cortez,	2016;	McPeek,	2017),	the	predator	(Cortez	&	Ellner,	2010),	
or	 both	 (e.g.	 Cortez	 &	Weitz,	 2014;	 van	 Velzen	 &	 Gaedke,	 2017;	
Figure	4b).	 In	all	 three	 instances,	EEFs	were	modelled	using	either	
separate	 equations	 for	 the	 ecological	 and	 evolutionary	 dynamics	
(e.g.	 Abrams	 &	Matsuda,	 1997)	 or	 QG	 recursion	 equations	 or	 an	
approximation	of	those	 (van	Velzen	&	Gaedke,	2017),	using	an	AD	
approach	(Marrow,	Dieckmann,	&	Law,	1996)	or	by	using	multiclonal	
LV	 equations	 (which	 are	 identical	 to	 “ecological	 selection”	models	
Cortez	&	Weitz,	2014;	Ellner	&	Becks,	2011;	Haafke,	Abou	Chakra,	
&	Becks,	2016;	Jones	&	Ellner,	2007;	Yamamichi,	Yoshida,	&	Sasaki,	
2011).	Including	life-history	trade-offs	between	defence	and	fecun-
dity	may	lead	to	recurrent	EEFs	(Huang,	Traulsen,	Werner,	Hiltunen,	
&	Becks,	2017;	Meyer,	Ellner,	Hairston,	Jones,	&	Yoshida,	2006).

Phenotypic	plasticity	has	been	found	to	play	an	important	role	
in	 predator–prey	 EEFs	 and	 has	 been	 incorporated	 for	 example	
by	 Yamamichi	 et	al.	 (2011),	who	 found	 that	 plasticity	 in	 prey	 de-
fence	promotes	stable	population	dynamics	more	than	rapid	evo-
lutionary	 responses,	 although	 plasticity	was	 not	 advantageous	 in	

F I G U R E  4  Examples	of	studies	in	which	feedbacks	occur	
in	two-species	settings.	(a)	Study	by	Vasseur	et	al.	(2011)	in	
which	the	competition	coefficients	determining	the	strength	of	
intra-	and	interspecific	competition	are	modelled	in	function	of	
an	evolvable	trait	(growth	or	defence	trait)	under	density-	and	
frequency-dependent	competition.	(b)	General	figure	on	possible	
EEFs	in	predator–prey	dynamics	(detailed	in	Cortez	&	Weitz,	2014).	
Generally,	a	trade-off	between	growth	and	predator	defence	is	
assumed	in	the	prey	population,	and	a	trade-off	between	mortality	
and	offence	is	assumed	in	the	predator	population.	Density	of	the	
predator	and	prey	can	both	influence	trait	evolution	in	the	predator	
and	prey	population,	which	due	to	the	previously	described	trade-
off,	determines	predator	and	prey	density.	(c)	General	figure	on	
possible	feedbacks	in	host–parasite	dynamics	(see	Luo	&	Koelle,	
2013).	In	a	model	of	virulence	evolution,	density	of	susceptible	
hosts	determines	the	degree	of	virulence	which	feeds	back	to	
change	the	density	of	susceptible	hosts	(striped	arrow).	In	a	model	
on	host	resistance,	density	of	the	infected	hosts	determines	
the	evolution	of	host	resistance	(dashed	arrow),	which	in	turn	
determines	the	density	of	both	susceptible	and	infected	hosts.	
(d)	General	representation	of	possible	feedbacks	in	mutualistic	
interactions.	Changes	in	the	ecological	interactions	between	
species	determine	the	evolution	of	a	mutualistic	trait,	which,	in	
turn,	can	change	the	ecological	interactions	between	species
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stable	environments.	The	evolution	of	plasticity	has	been	studied	
by	 Fischer	 et	al.	 (2014),	 who	 extended	 an	 LV	model	 allowing	 for	
variation	in	plasticity	among	multiple	genotypes	of	prey.	The	inclu-
sion	 of	 such	 variation	 in	models	 improved	 their	 ability	 to	 explain	
predator–prey	 dynamics.	Overall,	 predator—prey	 EEFs	 are	 a	 clas-
sical	example	of	 feedbacks	 involving	phase	shifts	and	 impacts	on	
stability.	These	effects	are	classically	modelled	with	ODEs.	Recent	
work	 highlights	 the	 importance	 of	 incorporating	 both	 effects	 of	
genetic	 diversity	 and	 phenotypic	 plasticity	 to	 explain	 community	
dynamics	(Kovach-Orr	&	Fussmann,	2013;	Yamamichi	et	al.,	2011).

4.3 | Host–parasite interactions

In	 a	 host–parasite	 interaction,	 one	 of	 the	 species	 lives	 at	 the	 ex-
pense	of	the	other	species.	Similar	to	predators,	parasites	can	 im-
pose	strong	selection	pressures	on	their	hosts,	for	example	resulting	
in	 the	evolution	of	defences	 that	 can	 in	 turn	 impose	 selection	on	
parasite	 traits.	 This	 process	 can	 lead	 to	 complex	 co-evolutionary	
dynamics	 in	spatial	and	nonspatial	settings.	Host–parasite	 interac-
tions	 are	often	 characterized	by	overlapping	 time	 scales	between	
epidemiological	and	evolutionary	processes	owing	to	the	rapid	evo-
lution	 of	 those	 systems.	 Yet,	 even	when	 evolution	 is	 slower	 than	
the	spread	of	disease,	selection	in	host–parasite	systems	is	charac-
terized	by	strong	density-dependent	feedbacks,	where	changes	 in	
densities	affect	selection	pressures	on	transmission,	virulence	and	
other	parasite	traits	(eco-to-evo),	and	the	resulting	trait	changes	in	
turn	alter	the	ecological	dynamics	(evo-to-eco;	Luo	&	Koelle,	2013;	
Figure	4c).

The	 study	of	virulence	evolution	 in	parasites	 and	pathogens	 is	
a	key	topic	in	the	theoretical	literature	involving	EEFs.	The	seminal	
work	of	Anderson	and	May	(1982)	showed	that	pathogen	evolution	
is	 shaped	 by	 the	 epidemiological	 dynamics	 of	 infectious	 diseases	
through	 the	 density	 of	 susceptible	 hosts.	 Since	 then,	 a	 large	 lit-
erature	has	been	devoted	 to	understanding	 the	effect	of	EEFs	on	
the	evolution	of	parasite	virulence	and	host	 resistance	 (e.g.	Boots	
&	 Haraguchi,	 1999;	 Dieckmann,	Metz,	 Sabelis,	 &	 Sigmund,	 2002;	
Frickel,	 Sieber,	 &	Becks,	 2016;	 Lenski	&	May,	 1994;	 Lion	&	Metz,	
2018;	 Van	 Baalen,	 1998).	Most	models	 of	 host–parasite	 EEFs	 use	
classical	epidemiological	models	(compartment	models	that	include	
susceptible,	infected	and	potentially	recovered	individuals;	SIR	mod-
els)	to	describe	the	changes	in	density	or	frequency	of	susceptible	
and	infected	hosts.	These	epidemiological	models	are	then	coupled	
with	AD	 (Dieckmann	et	al.,	2002;	Lion	&	Metz,	2018)	or	QG	 (e.g.,	
Day	&	Gandon,	2007;	Day	&	Proulx,	2004)	approaches.

In	the	wake	of	Anderson	and	May	(1982)’s	seminal	work,	many	
studies	have	focused	on	the	evolution	of	pathogen	traits,	under	the	
assumption	that	host	evolution	is	much	slower	and	can	be	neglected.	
This	has	led	to	a	good	understanding	of	how	EEFs	affect	pathogen	
evolution.	A	key	 insight	 is	 that,	even	 if	 the	host	 is	assumed	not	 to	
evolve,	the	time	scales	between	ecology	and	evolution	may	either	
be	decoupled	[e.g.,	the	pathogen	evolves	while	the	population	is	at	
an	endemic	equilibrium,	see	e.g.,	Dieckmann	et	al.	(2002);	Lion	and	
Metz	(2018)	for	a	review	of	AD	approaches]	or	overlap	(e.g.,	when	

the	pathogen	evolves	during	an	epidemic,	see	e.g.,	Day	&	Gandon,	
2007;	Day	&	Proulx,	2004	for	a	QG	formalism).	What	governs	the	
difference	in	time	scales	between	epidemiology	and	pathogen	evo-
lution	will	then	be	the	amount	of	standing	genetic	variation	or	the	
mutation	rate.

More	 generally,	 coevolution	 between	 hosts	 and	 parasites	
with	 overlapping	 generation	 times	 has	 been	 studied	 (Best	 et	al.,	
2010;	Eizaguirre,	Lenz,	Traulsen,	&	Milinski,	2009;	Nuismer,	Otto,	
&	Blanquart,	2008),	in	particular	in	the	local	adaptation	literature	
(Nuismer	et	al.,	2008),	but	often	under	the	restrictive	assumption	
of	fixed	demography,	which	sets	strong	limits	to	the	types	of	EEFs	
that	 are	 possible.	 In	 contrast,	 other	 studies	 of	 coevolution	 have	
demonstrated	how	the	dimension	of	the	environment	plays	a	crit-
ical	role	in	governing	evolutionary	branching	and	diversification	in	
both	the	host	and	the	pathogen	(Best	et	al.,	2010).	However,	 the	
study	 of	 EEFs	 in	 co-evolutionary	 host—parasite	 system	 remains	
underdeveloped.	Interestingly,	those	systems	appear	to	be	partic-
ularly	 amenable	 to	 experiments	 and	 should	 allow	 researchers	 to	
further	 tease	 apart	 the	underlying	effects	of	EEFs.	For	 example,	
Brunner	et	al.	(2017)	demonstrated	that	the	sole	presence	of	a	fish	
parasite	 in	an	experimental	ecosystem	alters	the	abiotic	environ-
ment	of	the	host	in	terms	of	nutrient	content	or	dissolved	oxygen.	
These	altered	environments	were	shown	to	impose	selection	on	a	
subsequent	generation	of	hosts,	hence	evidencing	that	macropar-
asites	can	mediate	eco-evolutionary	feedbacks	between	fish	and	
their	environment.

Host–parasite	 interactions	 have	 also	 played	 a	 crucial	 role	
towards	understanding	spatial	EEFs	 (e.g.,	Boots	&	Sasaki,	1999;	
Boots,	 Hudson,	 &	 Sasaki,	 2004;	 reviewed	 in	 Lion	 &	 Gandon,	
2015).	 These	 studies	 have	 often	 modelled	 space	 as	 a	 regular	
network	of	sites,	 in	which	each	site	 is	either	empty	or	contains	
a	 single	 host	 individual,	 which	 can	 be	 either	 susceptible	 or	 in-
fected.	Such	models	can	easily	be	analysed	using	 IBMs,	but	an-
alytical	 insight	 is	 also	possible	 to	 some	extent,	 using	either	AD	
or	QG	(Lion	&	Gandon,	2016).	Due	to	the	inherent	complexity	of	
spatial	 models,	 however,	 we	 only	 have	 a	 partial	 understanding	
of	how	the	 feedback	between	spatial	epidemiological	dynamics	
and	the	evolution	of	host	and	parasite	traits	unfolds	in	more	re-
alistic	 host—parasite	 interactions	 (but	 see	 Nuismer,	 Thompson,	
&	 Gomulkiewicz,	 2000,	 2003).	 In	 summary,	 the	 host—parasite	
literature	has	a	 long	tradition	of	studying	EEFs.	Methodological	
approaches	 differ	 depending	 on	 the	 level	 of	 complexity,	 from	
simple	ODEs	to	IBMs.

4.4 | Mutualistic interactions

A	mutualistic	interaction	implies	that	the	interaction	is	beneficial	for	
both	partners	involved	(e.g.,	plant–pollinator	or	host–symbiont	inter-
action).	EEFs	in	the	context	of	mutualisms	are	expected	to	strongly	
impact	the	co-evolutionary	process	between	mutualists	and	exploit-
ers	(eco-to-evo)	which	in	turn	shapes	the	ecological	dynamics	of	the	
system	 (evo-to-eco;	 Figure	4d;	 Doebeli	 &	 Knowlton,	 1998;	 Jones,	
Ferriere,	&	Bronstein,	2009).
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Eco-evolutionary	feedbacks	were	found	to	play	an	 important	
role	in	determining	phenotypic	and	population	outcomes	in	an	AD	
model	on	the	coevolution	of	mutualists	and	exploiters	when	long-
term	coexistence	of	the	species	was	possible	(Jones	et	al.,	2009).	
In	 the	model	 by	 Jones	 et	al.	 (2009),	 birth	 rates	 of	 the	mutualist	
and	exploiter	were	assumed	to	evolve	and	determine	 the	nature	
of	 the	 mutualistic	 interaction.	 Ferrière,	 Bronstein,	 Rinaldi,	 Law,	
and	Gauduchon	 (2002)	 constructed	 a	mathematical	model	 com-
bining	simple	Lotka–Volterra	equations	describing	 the	ecological	
mutualistic	interactions	between	the	two	species,	with	differential	
equations	describing	 the	evolutionary	dynamics	of	 the	mutualis-
tic	traits.	These	evolutionary	dynamics	follow	the	fitness	gradient	
shaped	by	the	underlying	ecological	dynamics	(eco-to-evo),	which	
in	turn	determine	the	benefit	of	the	mutualistic	 interaction	(evo-
to-eco;	Figure	4d).

Fewer	studies	have	investigated	the	effect	of	spatial	heterogene-
ity	on	mutualistic	interactions,	but	those	that	have	show	that	spatial	
heterogeneity	can	lead	to	long-term	persistence	of	mutualism	(e.g.,	
Doebeli	&	Knowlton,	1998).	Overall,	mutualistic	 interactions	 in	an	
eco-evolutionary	context	have	been	 studied	 less	 compared	 to	 the	
other	three	species	interaction	types	discussed	earlier.	Nevertheless,	
studies	have	 shown	 that	EEFs	may	play	 an	 important	 role	 for	 this	
type	of	interaction.

5  | EEFS IN A COMMUNIT Y AND 
ECOSYSTEM CONTE X T

The	 increasing	 interest	 in	 more	 complex	 ecological	 settings	 has	
resulted	in	a	rapid	growth	of	models	focusing	on	communities	and	
ecosystems	that	could	simultaneously	incorporate	evolutionary	dy-
namics	(Brännström	et	al.,	2012).	Such	models	extend	previous	work	
to	 include	 niche	 construction,	 plant–soil	 feedbacks,	 multi-species	
communities	and	food	webs.

5.1 | Feedbacks between organisms and abiotic 
environments

Eco-evolutionary	 feedbacks	 with	 the	 environment	 have	 been	
studied	 in	 the	 context	 of	 niche	 construction	 (Kylafis	 &	 Loreau,	
2011;	 Lehmann,	 2008;	 Odling-Smee,	 Odling-Smee,	 Laland,	
Feldman,	&	Feldman,	2003),	as	in	plant–soil	feedbacks,	for	exam-
ple	 (Schweitzer	 et	al.,	 2014;	Ware	et	al.,	 2018;	Figure	5a).	Game	
theory	has	been	used	to	investigate	selection	on	niche	construct-
ing	phenotypes	(Lehmann,	2008)	where	the	feedback	arises	when	
individuals	affect	their	environment	by	reproducing	(evo-to-eco),	
hence	altering	the	selection	pressure	on	the	population	 (eco-to-
evo).	 In	 plant–soil	 systems,	 plants	might	 adaptively	 regulate	 soil	
fertility,	 resulting	 in	 positive,	 self-sustaining	 nutrient	 feedbacks	
that	 influence	evolution.	For	example,	 increasing	the	direct	ben-
efit	of	soil	nutrient	conditioning	to	plants	has	been	predicted	to	
increase	 selection	 for	 higher	 values	 of	 soil	 conditioning	 traits	
(Kylafis	 &	 Loreau,	 2008).	 Implicit	 in	 this	 model	 is	 a	 genetically	

based	 plant	 trait	 that	 links	 plants	 with	 their	 soils.	 Subsequent	
models	have	 shown	 that	 these	genetically	based	plant–soil	 links	
can	 result	 in	 EEFs	 depending	 on	 the	match	with	 the	 soil	 gradi-
ent	and	the	genetic	variation	present	in	the	environment—altering	
plant	trait	(Schweitzer	et	al.,	2014).

F I G U R E  5  Examples	of	studies	in	which	feedbacks	occur	
between	abiotic	and	biotic	components	or	in	a	multi-species	
setting.	(a)	General	figure	of	EEFs	in	niche	construction	(Kylafis	
&	Loreau,	2011;	Lehmann,	2008)	and	plant–soil	feedbacks	
(Schweitzer	et	al.,	2014).	In	niche	construction,	the	abiotic	
environment	determines	the	evolution	of	a	trait	that	modifies	this	
abiotic	environment.	Similarly,	in	a	plant–soil	system,	a	plant	trait	
can	modify	the	soil,	which	drives	evolution	of	plant	traits.	(b)	Study	
by	Martín	et	al.	(2016)	in	which	trait	values	and	spatial	locations	
of	species	determine	competition,	changing	local	selection	
pressures,	resulting	in	shifting	local	and	global	trait	distributions	
and	community	diversity.	(c)	Study	by	Ito	and	Ikegami	(2006),	in	
which	each	species	has	a	separate	prey	and	predator	strategy	
which	results	in	clusters	of	trophic	species	arising	from	changing	
interactions	between	species,	which	in	turn	continuously	change	
the	position,	shape	and	size	of	occupied	areas	in	phenotypic	space	
and	change	trophic	interactions	resulting	in	further	phenotypic	
evolution	and	eventually	evolutionary	branching	and	the	
emergence	of	food	web	structure
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In	 plant–soil	 systems,	 evolutionary	 change	 in	 plant	 traits	 can	
influence	 ecological	 dynamics	 of	 soil	microbes	 (evo-to-eco)	which	
in	turn	can	change	selection	pressures	on	plant	traits	 (eco-to-evo).	
This	can	be	investigated	using	IBMs	(Schweitzer	et	al.,	2014)	or	by	
using	an	extended	version	of	classical	resource	competition	models	
(Eppinga,	Kaproth,	Collins,	&	Molofsky,	2011).	In	this	specific	model,	
the	decomposition	of	litter	releases	nutrients	that	can	be	taken	up	
by	 the	 plants	 influencing	 competitive	 ability	 of	 the	 plant	 (eco-to-
evo),	resulting	in	different	plant	genotypes	that	might	grow	better.	
The	change	in	the	genetic	composition	of	the	plant	population	can	in	
turn	influence	the	litter	pool	(evo-to-eco).

In	 analogy	 to	 negative	 niche	 construction	 (Odling-Smee	 et	al.,	
2003),	 the	 spatial	 structure	of	 local	negative	 feedbacks	can	 result	
in	changes	in	local	diversity	(e.g.,	Loeuille	&	Leibold,	2014).	The	en-
vironment	becomes	less	suitable	for	the	species	occupying	it	(evo-
to-eco),	which	induces	a	change	in	selection	pressure	on	the	species	
to	 evolve	 towards	 a	more	matching	 trait–environment	 value	 (eco-
to-evo).	Overall,	plant–soil	interactions	are	good	examples	of	niche	
construction	whereby	EEFs	can	both	be	modelled	and	observed	in	
nature.	The	methods	employed	range	from	formal	mathematical	ap-
proaches	to	IBMs.

5.2 | Feedbacks within communities

Theoretical	 studies	 on	 EEFs	 in	 multi-species	 communities	 can	 in-
crease	 our	 understanding	 of	 biodiversity	 (Patel	 et	al.,	 2018).	 Eco-
evolutionary	 analyses	 have	 led	 to	 new	 insights	 into	 coexistence	
theory,	 the	maintenance	 of	 diversity,	 as	well	 as	 the	 structure	 and	
stability	 of	 communities	 (Kremer	 &	 Klausmeier,	 2017;	 Patel	 et	al.,	
2018).	 Moreover,	 studies	 have	 found	 that	 evolution	 might	 main-
tain	 (Martín,	Hidalgo,	de	Casas,	&	Muñoz,	2016),	 increase	 (e.g.	 via	
speciation	 or	 ER	 Dieckmann	 &	 Doebeli,	 1999;	 Gomulkiewicz	 &	
Holt,	 1995;	 Rosenzweig,	 1978)	 or	 decrease	 (Gyllenberg,	 Parvinen,	
&	Dieckmann,	2002;	Kremer	&	Klausmeier,	2013;	Norberg,	Urban,	
Vellend,	Klausmeier,	&	Loeuille,	2012)	phenotypic,	species	and	func-
tional	diversity.

For	example,	Martín	et	al.	 (2016)	 show	 that	EEFs	can	maintain	
phenotypic	diversity.	The	authors	combine	niche-based	approaches	
with	neutral	theory	in	a	spatially	structured	IBM	where	each	individ-
ual	has	a	location	in	space	and	is	constrained	by	a	specific	trade-off	
between	resource	exploitation	and	competition.	Similar	individuals	
experience	 higher	 competition	 resulting	 in	 frequency-dependent	
selection.	Competition	only	 takes	place	between	neighbouring	 in-
dividuals,	changing	 local	selection	pressures,	which	results	 in	 local	
evolutionary	 shifts	 in	 phenotypic	 traits	 (eco-to-evo)	 that	 shift	 the	
global	 phenotypic	 trait	 distribution	 and	 influence	 species	 differ-
entiation	 and	 thus	 community	 diversity	 (evo-to-eco;	 Figure	5b).	
By	contrast,	Norberg	et	al.	 (2012)	found	that	the	eco-evolutionary	
processes	induced	by	climate	change	continued	to	generate	species	
extinctions	 long	after	 the	 climate	had	 stabilized	and	 thus	 resulted	
in	further	diversity	loss.	These	authors	used	a	spatially	explicit	eco-
evolutionary	model	based	on	partial	differential	equations	to	predict	
species	 responses	 to	 climate	 change	 in	 a	multi-species	 context	 in	

which	they	allowed	genetic	variation	and	dispersal	 to	 jointly	 influ-
ence	ecological	 (competition	and	species	sorting)	and	evolutionary	
(adaptation)	processes.	The	findings	of	both	studies	discussed	above	
can	easily	be	understood	in	the	light	of	modern	coexistence	theory	
(reviewed	in	Chesson,	2000)	as	they	relate	to	stabilizing	(concentrat-
ing	 intraspecific	 interaction	 by	 dispersal	 limitation)	 and	 equalizing	
mechanisms	(sorting).	In	summary,	EEFs	in	communities	emerge,	be-
cause	species’	traits	may	affect	the	community	and,	vice	versa,	the	
community	context	may	affect	trait	evolution	(terHorst	et	al.,	2018).	
Interestingly,	fitness	may	not	only	depend	on	densities,	but	also	on	
total	community	biomass,	total	productivity	or	even	on	species	rich-
ness.	Consequences	of	evolutionary	 change	can	be	understood	 in	
the	light	of	modern	coexistence	theory.

5.3 | Feedbacks in food webs

Evolutionary	dynamics	have	been	suggested	to	determine	food	web	
structure	(Rossberg,	Matsuda,	Amemiya,	&	Itoh,	2006).	Hence,	there	
has	been	an	upsurge	in	studies	including	evolutionary	dynamics	into	
food	web	models,	 by	 allowing	 a	 recurrent	 addition	 of	 new	 species	
or	morphs	into	the	food	web,	based	on	the	theory	of	self-organized	
criticality	 (Allhoff	&	Drossel,	 2013;	 Bak,	 Tang,	&	Wiesenfeld,	 1987;	
Bolchoun,	Drossel,	&	Allhoff,	2017;	Caldarelli,	Higgs,	&	McKane,	1998;	
Drossel,	Higgs,	&	McKane,	2001;	Rossberg	et	al.,	2006).	These	evolu-
tionary	food	web	models	often	depend	on	a	trait	that	shapes	the	biotic	
interactions	which	determine	the	food	web	structure.	Food	web	struc-
ture	selects	the	species	that	remain	in	the	system	(eco-to-evo),	which	
in	turn	alters	the	phenotypic	trait	distribution	in	the	system	on	which	
mutations	can	occur	to	create	new	species	or	morphs.	The	addition	
of	a	new	species	or	morph	changes	the	present	species	interactions	
(evo-to-eco),	hence	changing	the	food	web	structure	(Bolchoun	et	al.,	
2017).	This	interplay	between	population	dynamics	and	morph	evolu-
tion	determines	the	EEF	and	shapes	the	structure	of	 the	food	web.	
Similar	to	the	AD	framework,	it	is	assumed	that	ecological	dynamics	
occur	fast	and	reach	(quasi)equilibrium,	while	evolutionary	dynamics	
occur	on	a	much	slower	time	scale	(Allhoff	&	Drossel,	2013;	Guill	&	
Drossel,	 2008).	 Studies	 including	 both	 ecological	 and	 evolutionary	
processes	in	food	web	models	show	that	this	can	lead	to	new	insights	
into	food	web	dynamics	as	opposed	to	models	that	only	include	fixed	
ecological	dynamics	(Bolchoun	et	al.,	2017).

Most	studies	on	food	web	models	focus	on	speciation–extinc-
tion	dynamics	with	species	being	the	unit	of	the	model,	while	fewer	
studies	 have	 investigated	 how	 the	 evolution	 of	 traits	 results	 in	
food	web	formation	(Ito	&	Ikegami,	2006;	Takahashi,	Brännström,	
Mazzucco,	Yamauchi,	&	Dieckmann,	2013).	Both	 Ito	and	 Ikegami	
(2006)	and	Takahashi	et	al.	 (2013)	have	modelled	the	build	up	of	
a	food	web	through	evolutionary	dynamics	by	attributing	to	each	
individual	 or	 phenotype	 a	 prey	 and	 predator	 trait	 (resource	 or	
vulnerability,	 respectively,	utilization	or	foraging).	 Individuals	are	
assumed	to	reproduce	asexually,	and	offspring	may	differ	slightly	
because	of	small	random	mutations.	Ito	and	Ikegami	(2006)	show	
that	isolated	phenotypic	clusters	of	species	and	the	emergence	of	
higher	 trophic	 levels	arise	due	to	changing	 interactions	between	
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species	(eco-to-evo),	which	in	turn	continuously	changes	the	posi-
tion,	shape	and	size	of	occupied	areas	in	phenotypic	space.	These	
changes,	in	turn,	alter	trophic	interactions	(evo-to-eco)	resulting	in	
further	phenotypic	evolution	and	eventually	evolutionary	branch-
ing	 (Figure	5c).	Takahashi	et	al.	 (2013)	used	an	 IBM	to	show	that	
initial	 phenotypic	 divergence	 in	 the	 foraging	 trait	 relaxes	 inter-
ference	competition	(eco-to-evo),	which	results	in	the	emergence	
of	species	clusters.	The	resulting	changes	 in	species	 interactions	
(trophic	 levels;	 evo-to-eco)	mediate	 further	 divergence	 in	 forag-
ing	 traits	 and	 predator	 vulnerability	 (eco-to-evo).	 A	 study	 by	 de	
Andreazzi,	Guimarães,	and	Melián	(2018)	explicitly	evaluated	the	
effects	 of	 network	 structure	 on	 eco-evolutionary	 dynamics	 for	
long-term	 ecological	 network	 stability,	 by	 using	 different	 antag-
onistic	species	networks	 in	 their	simulations.	Population	dynam-
ics	were	modelled	to	depend	on	the	phenotypic	trait,	while	mean	
trait	evolution	depended	on	the	environment	and	the	antagonistic	
species	 interactions.	 The	 authors	 showed	 that	 EEFs	 resulted	 in	
specific	 patterns	of	 specialization	which	 led	 to	 increases	 in	 spe-
cies	mean	abundances	and	 to	decreases	 in	 temporal	variation	 in	
abundances.

The	 effects	 of	 spatial	 dynamics	 on	 food	web	 structure	 have	
also	 been	 studied.	 For	 example,	 Loeuille	 and	 Leibold	 (2008),	
combined	 a	 simple	 food	web	 structure	 (specialist	 and	 generalist	
herbivore	species	feeding	on	two	plants	which	in	turn	feed	on	nu-
trient	resources),	with	a	12-patch	metacommunity	to	evaluate	the	
interactions	between	evolutionary	adaptation	and	community	as-
sembly	dynamics	as	a	function	of	dispersal.	The	two	plant	species	
had	quantitative	and	qualitative	defence	traits	that	were	heritable,	
upon	occurrence	of	small	mutations	between	each	time	steps.	The	
authors	 found	 that	 the	occurrence	of	dispersal	between	patches	
led	to	the	evolution	of	distinct	morphs	of	the	plant	species	(eco-to-
evo),	which	influenced	the	trophic	and	food	web	structure	in	local	
patches	(evo-to-eco).

Overall,	while	evolutionary	food	web	models	have	all	elements	
present	 for	EEFs	to	occur,	an	explicit	analysis	of	 these	feedbacks	
remains	 rare.	This	 is	probably	due	 to	 the	main	assumption	of	 the	
separation	of	time	scales	of	ecology	and	evolution,	with	mutation	
being	considered	equivalent	to	speciation	(Takahashi	et	al.,	2013),	
and	 traits	 remaining	 constant	within	 species.	 Exceptions	 exist	 of	
course,	such	as	the	food	web	model	used	by	Loeuille	and	Leibold	
(2008).	 However,	 especially	 meta-food	 web	 models	 are	 scarce	
(Urban	et	al.,	 2008).	 Evolutionary	 food	web	models	have	promis-
ing	 features	 that	may	 result	 in	a	better	understanding	of	EEFs	 in	
more	 complex	 (natural)	 scenarios	 and	 likely	 represent	one	of	 the	
current	 major	 challenges	 in	 eco-evolutionary	 modelling	 (Melián	
et	al.,	2018).

6  | SYNTHESIS AND CONCLUSIONS

Throughout	this	overview,	we	found	that	EEFs	have	been	incorpo-
rated	into	theoretical	models	across	a	wide	range	of	different	levels	
of	 biological	 organization.	 The	 relevance	of	 the	EEF	may	not	only	

depend	on	the	biological	system,	but	also	on	the	specific	traits	used:	
Different	effects	may	be	found	depending	on	whether	the	trait	is	in-
fluenced	by	the	ecological	property	or	not	(e.g.,	density-dependent	
versus	density-independent	traits).	Not	surprisingly,	including	EEFs	
in	theoretical	models	significantly	changes	our	view	of	well-known	
patterns	emerging	from	pure	ecological	or	pure	evolutionary	models	
(e.g.,	Dieckmann	&	Metz,	2006;	Poethke	et	al.,	2011).	More	specifi-
cally,	we	have	identified	models	that	include	EEFs,	whose	underly-
ing	formalisms	fall	into	a	few	categories	(Figure	1b).	In	principle,	any	
modelling	framework	that	couples	ecological	dynamics	 (e.g.,	ODEs	
and	IBMs)	with	an	evolutionary	model	(e.g.,	QG,	AD	or	GA)	can	be	
useful	 for	 studying	 feedbacks.	 Studies	modelling	 intertwined	eco-
logical	and	evolutionary	dynamics	most	often	differ	in	their	assump-
tion	of	the	time	scale	at	which	ecological	and	evolutionary	processes	
occur.	Studies	assuming	contemporary	ecological	and	evolutionary	
dynamics	often	 couple	ODEs	with	QG	or	use	 IBMs,	while	 studies	
assuming	evolution	to	occur	when	ecological	dynamics	are	at	equi-
librium	 couple	 demographic	 models	 with	 AD	 to	 make	 analogous	
assumptions.

6.1 | Conclusions to date

Based	on	our	nonexhaustive	overview	of	theoretical	work	on	EEFs,	a	
few	general	conclusions	emerge:	First,	EEF	models	explicitly	include	
ecological	dynamics	 in	 the	analyses	of	evolutionary	processes	and	
vice	versa.	Density-dependent	selection	and	frequency-dependent	
selection	 are	 often	 key	 ingredients	 for	 EEFs.	 In	many	 cases,	 den-
sity	dependency	 and	 frequency	dependency,	 as	well	 as	 ecological	
stochasticity,	 are	 not	 a	 priori	 assumptions,	 but	 emerge	 from	 eco-
logical	settings	and	trait	correlations,	for	example.	Second,	EEFs	are	
not	new	to	evolutionary	ecology	theory—they	are	deeply	rooted	in	
the	theory	of	many	subdisciplines.	For	instance,	the	predator–prey	
and	host–parasite	 literature,	 speciation	 literature	and	evolutionary	
branching,	 character	 displacement,	 and	metapopulation	modelling	
or	niche	construction	theory	naturally	incorporate	EEFs.	Strikingly,	
while	 the	 field	of	 (meta)community	ecology	 is	 rather	new	 (Leibold	
et	al.,	2004),	EEFs	seem	to	have	been	included	in	(meta)community	
ecology	very	 rapidly,	 culminating	 in	 the	 recognition	 that	 the	basic	
drivers	of	evolution	and	community	ecology	are	analogous	(Vellend,	
2010).	 Third,	 in	 a	 spatial	 setting,	 dispersal	 is	 a	 primary	 candidate	
for	successful	eco-evolutionary	 linkages,	because	dispersal	 is	both	
an	 ecological	 process	 impacting	 densities	 and,	 at	 the	 same	 time,	
mediates	evolution	via	gene	flow.	 In	addition,	 it	 is	 itself	subject	 to	
evolution	 (Ronce,	 2007).	 Movement	 can	 be	 similarly	 important	
(Hillaert,	Vandegehuchte,	Hovestadt,	&	Bonte,	2018).	Fourth,	EEFs	
do	not	necessarily	require	rapid	or	contemporary	evolution	(Post	&	
Palkovacs,	2009).	Of	course,	contemporary	evolution	has	sparked	a	
lot	of	 interest	 in	EEFs	 (Hendry,	2017),	but	feedbacks	are	also	pos-
sible	over	longer	time	scales	(e.g.,	as	shown	in	AD	models).	Fifth,	our	
short	 overview	 of	 the	 eco-evolutionary	 modelling	 toolbox	 clearly	
highlights	that	the	main	character	of	an	eco-evolutionary	model	 is	
the	combination	of	demographic	and	evolutionary	models,	 regard-
less	of	the	concrete	formalism.
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Because	different	formalisms	originate	from	different	fields,	they	
often	rely	on	differing	assumptions.	For	instance,	the	time	scales	on	
which	processes	occur	and	the	sources	of	genetic	variation	are	im-
portant	considerations	of	the	different	modelling	formalisms	(Lande,	
2007;	Sӕther	&	Engen,	2015).	This	has	made	some	formalisms	more	
focussed	on	analysing	evolutionary	endpoint	and	long-term	dynam-
ics	 (AD),	while	 others	 have	 focused	 on	 short-term	 dynamics	 from	
one	generation	to	the	next	(QG).	However,	in	both	formalisms,	incor-
porating	EEFs	is	feasible.	The	separation	of	time	scales	also	means	
that	the	form	of	the	feedback	may	change	when	we	move	from	one	
dynamical	regime	to	the	other,	which	has	been	well	studied	in	host–
parasite	models	(Day	&	Gandon,	2007;	Gandon	&	Day,	2009;	Lenski	
&	May,	1994;	Lion,	2018).	However,	most	 interest	probably	 lies	 in	
predicting	 the	mid-term	dynamics	 of	 an	EEF	 system.	To	 approach	
this	properly,	an	important	issue	for	future	theoretical	work	will	be	
to	develop	mechanistic	models	for	the	dynamics	of	phenotypic	and	
genotypic	 variation	 in	 populations	 evolving	 at	 this	 mid-term	 time	
scale	of	 tens	 to	hundreds	of	generations	 (see	Figure	6	 for	an	 indi-
vidual-based	perspective).	 This	would	 reveal	 for	 instance	whether	
EEFs	 are	 time-dependent	 and	how	 common	 they	 are	 expected	 to	
be.	However,	to	couple	these	models	to	natural	systems,	one	needs	
to	measure	heritability	and	genetic	(co)variances	of	traits	which	can	
be	challenging.

Our	 review	 also	 underlines	 the	 pervasive	 nature	 of	 EEFs.	 It	
seems	at	best	difficult	to	design	a	model	that	includes	ecology	and	
evolution	without	 an	EEF	 (see	 also	Hendry,	 2017;	 chapter	 1	 for	 a	
discussion).	However,	it	is	possible	that	some	traits	have	little	effect	
on	 the	 ecological	 dynamics,	 or	 that	 some	 ecological	 variables	will	
have	little	effect	on	the	evolutionary	dynamics.	For	instance,	in	a	dis-
crete-time	model,	if	absolute	fitness	is	proportional	to	a	function	of	
density,	say	Wi(t)	=	bi f(Nt),	then	relative	fitness	will	not	depend	on	Nt,	
so	we	can	say	that	EEFs	do	not	matter	for	evolution	in	this	specific	
case.	In	models	where	an	optimization	principle	holds	(sensu	Metz,	
Mylius,	&	Diekmann,	2008),	we	also	have	very	simple	ecological	and	
evolutionary	 dynamics:	 The	 focal	 trait	 average	 steadily	 increases	

and	resource	density	decreases	until	a	maximum	(resp.	minimum)	is	
reached.	Such	simplistic	EEFs	have	been	termed	frequency	indepen-
dence	in	the	broad	sense	by	Metz	and	Geritz	(2016).	Overall,	recent	
models	have	become	more	elaborate.	However,	increased	complex-
ity	and	realism	often	trades	off	with	tractability.	As	a	consequence,	
these	studies	must	provide	additional	tests	that	either	involve	mod-
els	where	the	presumed	feedback	is	absent	or	provide	a	simplified	
analytical	model	(e.g.,	Branco,	Egas,	Elser,	&	Huisman,	2018;	Kubisch	
et	al.,	2016,	for	examples	involving	IBMs).

6.2 | The way forward

The	challenge	today	consists	in	pursuing	new,	more	integrative	and	
mechanistic	modelling	avenues	which	have	the	potential	to	include	
different	 aspects	 of	 realism,	 such	 as	 genotype–phenotype	 map-
ping,	plasticity	as	well	as	population	and	spatial	structure	(Figure	6)	
and	predicts	mid-term	dynamics	of	EEFs	as	outlined	above.	Current	
theory	 has	 greatly	 increased	our	 understanding	 of	 EEFs	 (McPeek,	
2017),	 but	 these	 feedbacks	 have	 been	 primarily	 explored	 within	
hierarchical	 levels	 of	 ecosystem	 organization,	 be	 they	 spatial	 or	
temporal	hierarchies,	and	have	often	 involved	only	single	or	a	few	
independently	evolving	traits.	While	the	presence	of	a	hierarchical	
organization	of	ecosystems	is	well	established	(Melián	et	al.,	2018),	
it	is	an	ongoing	challenge	to	identify	the	relevant	hierarchical	levels	
and	their	interdependencies	to	understand	EEFs.

Currently,	the	leading	graphical	model	adopts	an	implicit	hierar-
chy	with	feedbacks	between	levels	from	genes,	to	traits,	to	popula-
tions,	 to	 communities	 and	 to	ecosystem	processes	 (Hendry,	2017;	
see	 also	 Figure	1a	 for	 a	 simplification).	Making	 such	 a	 conceptual	
model	more	mechanistic	 requires	 understanding	 how	 interactions	
at	 one	 scale	 (gene	 regulatory	 networks	 or	 complex	 traits)	 affect	
processes	at	different	scales	(trait-dependent	species	interactions).	
One	such	modelling	attempt	by	Melián	et	al.	(2018)	links	ecological	
and	evolutionary	networks	in	a	meta-ecosystem	model,	taking	into	
account	demography,	 trait	evolution,	gene	flow	and	the	ecological	

F I G U R E  6  Mechanistic	underpinnings	of	EEFs.	Ecological	dynamics	(left)	are	driven	by	individual-level	properties	(birth,	death,	dispersal).	
Interactions	between	individuals	of	the	same	or	different	species	(biotic	interactions)	impact	these	properties,	which	may	lead	to	density	
dependence,	for	example.	Individuals	interact	with	the	abiotic	environment	and	vice	versa.	Importantly,	these	ecological	settings	will	impact	
selection,	drift	and	migration	(eco-to-evo).	Evolution	is	governed	by	the	interaction	between	these	processes,	genetic	constraints	and	
mutations.	The	resulting	phenotype	is	subsequently	determined	by	the	genotype–phenotype	map.	Ultimately,	the	phenotype	will	impact	
ecology	(evo-to-eco)	by	changing	births,	death,	dispersal	and	the	abiotic	environment.	Plasticity	(dashed	lines)	may	modulate	the	phenotype	
and,	hence,	the	dual	effects	of	the	organism	on	biotic	and	abiotic	environments
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dynamics	of	natural	selection.	Such	process-based	models	can	yield	
new	insights	into	the	mechanistic	basis	of	EEFs	in	more	complex	nat-
ural	scenarios.	Some	of	the	most	 important	processes	are	summa-
rized	in	Figure	6	which	expands	the	conceptual	model	presented	in	
Figure	1a	to	a	more	mechanistic	level.	With	this	representation,	we	
propose	 that	 feedbacks	are	best	conceptualized	as	emerging	 from	
individual-level	interactions	(see	also	Rueffler,	Egas,	&	Metz,	2006),	
with	dispersal	and	interactions	with	the	abiotic	environment	leading	
to	the	emergence	of	the	relevant	hierarchical	complexity.

Besides	 theoretical	 advances,	 connecting	 theory	 to	 controlled	
laboratory	or	 field	 experiments	more	 tightly	will	 allow	 for	 the	 ex-
perimental	assessment	of	theoretical	predictions	about	feedbacks.	
For	 example,	 using	 rotifer–algae	 chemostats,	 Yoshida	 et	al.	 (2003)	
experimentally	 tested	 predictions	 of	 a	 theoretical	 predator–prey	
model	 that	allowed	 for	prey	evolution.	This	experiment	confirmed	
the	antiphase	oscillations	predicted	from	theory	when	prey	evolves	
defence	strategies.	While	such	prominent	examples	of	the	integra-
tion	of	theory	and	empirical	data	on	EEFs	exist	 (see	among	others	
also,	 Becks	 et	al.,	 2012;	 Bonte	&	Bafort,	 2018;	De	Meester	 et	al.,	
2019;	Fischer	et	al.,	2014;	Fronhofer	&	Altermatt,	2015;	Huang	et	al.,	
2017;	 Litchman,	 Klausmeier,	 &	 Yoshiyama,	 2009;	 Metcalf	 et	al.,	
2008;	Thomas,	Kremer,	Klausmeier,	&	Litchman,	2012;	Van	Nuland,	
Ware,	Bailey,	&	Schweitzer,	2019)	breadth	of	 the	 theoretical	work	
highlighted	here,	the	coupling	of	empirical	data	from	natural	and	ex-
perimental	settings,	with	theoretical	models,	needs	to	be	deepened.	
This	gap	between	 theory	and	empirical	work	may,	 in	part,	be	due	
to	differences	in	technical	jargon	that	impede	effective	communica-
tion	between	theoreticians	and	empiricists	as	well	as	modelling	spe-
cializations	among	theoreticians	which	impede	synthesis	or	at	least	
slowdown	 progress.	 Isolation	 among	 subdisciplines	 and	 methods	
leads	to	confusion,	reduced	inference	and	will	not	advance	the	field.	
In	the	latter	case,	efforts	such	as	those	of	Queller	(2017)	and	Lion	
(2018)	at	unifying	theoretical	fields	are	urgently	needed.	To	advance	
theory	on	EEFs,	we	here	suggest	that	taking	a	mechanistic	approach	
focused	on	 individual-level	 traits	 (Rueffler	et	al.,	2006)	as	outlined	
in	 Figure	6	 can	 be	 productive	 for	 developing	 novel	 and	 synthetic	
theory.	Key	ingredients	to	such	an	individual-level	approach	are	the	
description	of	focal	organisms	in	terms	of	individual	properties	(age,	
ecologically	 important	 traits,	 life-history	 parameters)	 and	 linking	
these	to	demographic	processes	(see	also	Travis	et	al.,	2014).	Most	
importantly,	scientists	need	to	learn	to	appreciate	the	strengths	of	
their	respective	approaches,	be	they	theoretical,	experimental	lab-
oratory-based	or	comparative,	and	not	focus	on	the	weaknesses	to	
discard	possible	avenues	of	collaboration	and	progress.

Clearly,	 bridging	 between	 theory	 and	 empirical	 data	 is	 more	
difficult	when	studying	ecology	and	evolution	in	the	wild	(Hendry,	
2019)	and	ecological	pleiotropy	may	even	cancel	out	EEFs	(DeLong,	
2017).	 However,	 theoretical	 models	 are	 the	 best	 avenue	 to	 for-
mulate	 hypotheses	 and	 generate	 testable	 predictions	 which	
strengthen	 inference.	We	suggest	 that	a	 three-way	approach,	 in-
tegrating	 theory,	 laboratory-based	 experiments	 and	 comparative	
data	 from	 natural	 communities	 will	 enhance	 our	 understanding	
on	how	prevalent	EEFs	are	 in	nature.	This	knowledge	will	also	be	

critical	for	communicating	the	importance	of	EEFs	to	policy	makers.	
In	this	context,	it	is	central	to	know	how	feedbacks	affect	biodiver-
sity	dynamics,	whether	 the	evolution	of	 resistance	may	be	 faster	
with	or	without	feedbacks,	or	whether	population	size	can	be	bet-
ter	 controlled	by	modifying	 certain	 components	of	 feedbacks,	 to	
name	 but	 a	 few	 examples.	 Understanding	 the	 dynamical	 conse-
quences	of	EEF	is	more	important	than	ever	in	a	rapidly	changing	
world.
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