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Abstract1

As much dispersal research has focused on the eco-evolutionary dynamics of dispersal rates, it remains2

unclear what shape evolutionarily stable dispersal kernels must be expected to have. Yet, detailed3

knowledge about dispersal kernels, quantifying the statistical distribution of dispersal distances, is of4

pivotal importance for understanding biogeographic diversity, predicting species invasions, and explaining5

range shifts. We therefore examine the evolution of dispersal kernels in an individual-based model of a6

population of sessile organisms, such as trees or corals. Specifically, we analyze the influence of three7

potentially important factors on the shape of dispersal kernels: distance-dependent competition, distance-8

dependent dispersal costs, and maternal investment reducing an offspring’s dispersal costs through a9

trade-off with maternal fecundity. We find that without maternal investment, competition and dispersal10

costs lead to unimodal kernels, with increasing dispersal costs reducing the kernel’s width and tail weight.11

Unexpectedly, maternal investment inverts this effect: kernels become bimodal at high dispersal costs.12

This increases a kernel’s width and tail weight, and thus the fraction of long-distance dispersers, at the13

expense of simultaneously increasing the fraction of non-dispersers. We finally demonstrate the qualitative14

robustness of our results against variations in a majority of tested parameter combinations.15



Introduction16

Understanding and eventually predicting the distribution of species in space and time has never been17

more important. Within the boundaries of local adaptation a species’ range is mainly influenced by its18

dispersal abilities (Kokko & López-Sepulcre, 2006). Consequently there are numerous empirical and even19

more theoretical studies on dispersal of plants and animals (Clobert et al., 2012), but so far, particularly20

theoretical studies on dispersal have mainly focused on the emigration propensity of individuals, while the21

dispersal process itself and the question how far to disperse has been mostly ignored or tackled with rather22

arbitrary assumptions like nearest neighbour (e.g. Travis et al., 1999; Gros et al., 2006) or global dispersal23

(e.g. Poethke & Hovestadt, 2002). However, the growing awareness of the enormous influence of dispersal24

distances on colonization and range expansion particularly in plants (Nichols & Hewitt, 1994; Nathan25

et al., 2002; Bohrer et al., 2005; Nathan, 2006; Alsos et al., 2007) has inspired a more thorough analysis of26

so-called dispersal kernels — the statistical distribution of propagules in terms of distances travelled from27

their origin (Cousens et al., 2008; Hovestadt et al., 2012). The specific form of such kernels defines not28

only the mean dispersal distance, but also the occurrence of potentially important but rare long-distance29

dispersal events (LDD; Kot et al., 1996; Muller-Landau et al., 2003). ‘Fat-tailed’ distributions, which30

imply a relatively large proportion of LDD, increase the velocity of species invasions (Kot et al., 1996;31

Caswell et al., 2003), their ability to cope with habitat fragmentation (Dewhirst & Lutscher, 2009), and32

may influence biogeographic patterns of species diversity (Chave et al., 2002; Nathan, 2006).33

An additional challenge arises from the term ‘dispersal kernel’ not always being clearly defined. A34

kernel may be described by two distinctly different probability-density functions (pdfs): (i) the density35

pdf, which describes the density of propagules to be expected at a certain distance, and (ii) the distance36

pdf, which describes the distribution of distances the propagules are dispersed to (see also Cousens et al.,37

2008; Hovestadt et al., 2012). While both definitions are correct and kernels can be expressed either way,38

their shapes will systematically differ. For example, if one considers a uniform distribution of propagules39

per area up to a certain maximal dispersal distance, the density pdf will look like a cylinder, while the40

distance pdf will be a linearly increasing function of distance up to the maximal dispersal distance. This41

is simply due to the fact that in two dimensions the area of a circle increases quadratically with its radius,42

so the area of a thin ring at the circle’s perimeter increases linearly with its radius. Thus, if the propagule43

density is to be constant within each ring independent of its radius, proportionally more propagules have44

to be dispersed to larger distances, so as to yield the same propagule density for larger rings. Throughout45

this manuscript, we express dispersal kernels in terms of their distance pdf.46

In spite of the immense relevance of the specific form of the dispersal kernel, it is still unclear how an47

optimal or evolutionarily stable kernel should look like. This question has been addressed for the first time48
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by Hovestadt et al. (2001), who found that fat-tailed dispersal kernels evolve in autocorrelated landscapes49

(and at sufficiently fine scales, all landscapes are autocorrelated). While a certain fraction of propagules50

will disperse to the immediate surroundings of the parent, a significant fraction of propagules will exhibit51

long-distance dispersal: the latter propagules disperse more or less uniformly over the landscape, which52

minimizes kin competition (Hamilton & May, 1977; Rousset & Gandon, 2002). The shape of the dispersal53

kernel can thus be understood as the result of two opposing selection pressures: kin competition would be54

minimized by a completely uniform distribution of propagules, while distance-dependent dispersal costs55

(for a review, see Bonte et al., 2012) select against long-distance dispersal.56

While Hovestadt et al. (2001) include dispersal costs only implicitly, via an assumption of increasingly57

unsuitable habitat Rousset & Gandon (2002) explicitly analysed the effect of distance-dependent dispersal58

costs. They predict unimodal dispersal kernels (in terms of the distance pdf) for all scenarios with59

costs monotonically increasing with dispersal distance. Like most studies on dispersal evolution Rousset60

& Gandon (2002) assume that dispersal is under the control of the dispersing individual. Yet, this61

assumption is rather unlikely to be completely true for passively dispersing propagules like seeds. Thus,62

Starrfelt & Kokko (2010) have studied the evolution of dispersal distance and kernel shapes in the context63

of parent-offspring conflict. They could show that maternal control of dispersal generally leads to longer64

dispersal distances and even to fat-tailed kernels.65

While all these earlier studies represent important steps towards a better understanding of the evo-66

lution of the shapes of dispersal kernels, two fundamental issues known to heavily influence dispersal67

evolution have not yet been taken into account: (i) effects of the overall strength, and gradual attenua-68

tion with distance, of competitive interactions have not been considered, and (ii) effects of trade-offs in69

parental investment into offspring dispersal have not been investigated. Firstly, as Berger et al. (2008)70

point out, competition is a process that fundamentally shapes the spatial patterns found in plant com-71

munities and that needs to be modeled at the individual level (see e.g. Law et al., 2003; Travis et al.,72

2010; North et al., 2011), and not only at the population level. A large number of models in dispersal73

ecology are grid-based (e.g. Murrell et al., 2002; Gros et al., 2006; Bonte et al., 2010), which implies either74

that competition acts at the local population level, or — if only one individual is allowed per grid cell75

— that the assumed competition kernel has a quadratic base, which is a somewhat artificial assumption.76

Secondly, if one concedes that in passive dispersers the dispersal process, more specifically the dispersal77

distance, is centrally influenced by the parent organism (‘maternal control’ as in Starrfelt & Kokko 2010)78

it is also very likely that parents will invest in the dispersal abilities of their offspring (for empirical79

evidence see Wheelwright & Logan, 2004). It has been shown theoretically and empirically (e.g. Roff,80

1994; Fronhofer et al., 2011; Burton et al., 2010; Travis et al., 2010, 2012) that life-history trade-offs,81

e.g., between reproduction and dispersal ability, may deeply influence the evolution of dispersal, in a way82
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that may lead, for example, to polymorphisms in which low-dispersal and high-dispersal morphs coexist.83

In the context of sessile organisms with passive dispersal, such trade-offs are inter-generational and are84

more appropriately described in terms of maternal investments that may offset an offspring’s dispersal85

costs. Especially in plants, in which seeds are surrounded by maternal tissue and may depend on these86

structures for dispersal, it is sensible to include this aspect and to analyze the consequences of such87

maternal investment.88

Therefore, we here present an individual-based model of a population of sessile organisms, such as89

trees or corals, and investigate the evolution of the shapes of dispersal kernels. In contrast to the great90

majority of existing models (e.g. Murrell et al., 2002; Gros et al., 2006; Bonte et al., 2010; North et al.,91

2011), we do not a priori assume any specific kernel shape. Instead, we derive evolutionarily optimal92

kernel shapes under the assumption that long-term evolution can find ways to realize them. We explicitly93

account for three different selection pressures of relevance for the evolution of the shape of dispersal94

kernels: distance-dependent competition (e.g., Roughgarden, 1974; Law et al., 2003; Travis et al., 2010;95

North et al., 2011), distance-dependent dispersal costs (for a review, see Bonte et al., 2012), and maternal96

investment reducing the dispersal costs experienced by dispersing offspring.97

The model98

In our model, each individual (i = 1, . . . , N) is characterized by its location (xi, yi) and its dispersal kernel99

(Pi). Individuals are located in a two-dimensional spatially continuous and homogeneous habitat, with100

0 ≤ xi, yi ≤ 100 and periodic boundary conditions. Time is discrete and generations are overlapping.101

Dispersal kernels102

We define dispersal kernels as probability distributions (P (d)) of reaching a distance (d) after a dispersal103

event, i.e., we use a distance pdf. Since we do not a priori restrict attention to a specific functional104

relationship between P and d, the dispersal kernels in our model are implemented as function-valued105

traits (Dieckmann et al., 2006). As is common in studies of function-valued traits, we approximate the106

theoretically infinite-dimensional trait by a sufficiently large, but finite, number of values. Specifically,107

we use n = 21 values to describe the probabilities of reaching a distance class (dk, k = 1, . . . , n, with d1108

corresponding to d = 0, d2 corresponding to 0 < d ≤ 1, d3 corresponding to 1 < d ≤ 2, . . ., and with109

d21 corresponding to 19 < d ≤ 20). All values dk are positive and are normalized so as to sum up to 1,110 ∑n
k=1 P (dk) = 1 (see also Hovestadt et al., 2001; Starrfelt & Kokko, 2010).111

To ensure that the chosen trait discretization does not unduly influence our results, we carried out112

additional numerical analyses with up to n = 31 distance classes. We also analyzed the effect of increasing113
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the extent of the first distance class (with d1 corresponding, instead of to d = 0, to 0 ≤ d ≤ 0.1 or to114

0 ≤ d ≤ 0.2). These robustness checks are discussed in detail below; here we only mention that our115

results remained essentially unchanged.116

Reproduction117

Once per time step, all individuals reproduce sexually. They produce a stochastic number of offspring,118

drawn from a Poisson distribution with mean λ. As our model is applicable, for example, to trees, we119

assume that individuals are simultaneously monoecious, i.e., they have male and female reproductive120

organs. Selfing is excluded, and for simplicity we assume that an individual mates with its nearest121

neighbour as in Starrfelt & Kokko (2010).122

Inheritance123

As our model is phenotypic, offspring inherit for each distance class of their dispersal kernel the mid-124

parental value of their two parents, altered by a segregation kernel (Roughgarden, 1979). The latter is125

given by a normal distribution with the mid-parental value as mean and σs = 0.1 as standard deviation.126

This allows us to include the effects resulting from the processes of segregation and recombination during127

meiosis.128

We additionally assume rare mutation events. The mutation rate is constant (m = 0.001). To optimize129

computing time, the root-mean-square size of mutational steps, i.e., the average amount by which a value130

Pi(dk) is changed by mutation decreases with time (see also Poethke et al., 2010): σm = e−5t/tmax , with131

t denoting time and tmax the maximal time considered in a model run. To guarantee that segregation,132

recombination and mutations result in positive numbers for the kernel the values are log-transformed133

before the mid-parent values are altered by the segregation kernel and mutations. Mutations are applied134

after segregation, with mutational increments being drawn from a normal distribution with zero mean135

and standard deviation σm.136

Dispersal137

As we investigate the evolution of the dispersal kernel of sessile organisms with passive dispersal, we138

assume maternal control of dispersal (see also North et al., 2011). This means that the mother’s genotype139

defines the dispersal distance of the offspring. As Hamilton & May (1977) note optimal dispersal distances140

may be different depending on whether one maximizes the inclusive fitness of the mother or of the141

offspring. Due to costs of dispersal applying directly to the offspring, dispersal distances under offspring142

control are often reduced. This has been analyzed in detail by Starrfelt & Kokko (2010). We have run143

4



additional numerical analyses with offspring control and found that the results corresponded well to their144

results.145

The dispersal distance of an offspring is determined by randomly drawing a distance class (dk) ac-146

cording to the maternal dispersal kernel (P (dk)). The realized dispersal distance is drawn randomly with147

a uniform distribution from this interval, i.e., if d1 is drawn the dispersal distance (d) is always zero, if148

d2 is drawn the dispersal distance is between 0 and 1 (0 < d ≤ 0.1) and so forth.149

Dispersal costs and maternal investment150

As we assume a constant per step mortality (µ0
d) the probability of dying while dispersing over a given151

distance (δ) follows an exponential function (figure 1)152

µd = 1− e−µ0
dδ. (1)

Of course, the experienced dispersal costs will not depend on the net distance travelled, but on the153

realization of the dispersal event. Logically, equation 1 holds for a straight line walk. For any other154

realization the cost function will follow the general form µd = 1 − e−µ0
dδ

v/c. If the realization is a155

(correlated) random walk, i.e. follows a Lévy process, we find that v < 1 (results not shown). This does156

not change the shape of the dispersal cost function qualitatively: v < 1 increases the slope of the function157

for small distances while it saturates later. Additional numerical analyses show that our results are not158

influenced qualitatively by this assumption. For a detailed analysis of the influence of different dispersal159

cost functions see Rousset & Gandon (2002).160

Dispersal costs may be offset — at least to some extent — by maternal investment which increases the161

dispersal ability of propagules. Such a trade-off implies that, although investment of resources increases162

one component of fitness, another component of fitness is reduced (Roff & Fairbairn, 2007). Very often163

an increase in dispersal ability is correlated with a decrease in fertility (Zera & Denno, 1997; Tanaka &164

Suzuki, 1998; Roff, 2002; Roff et al., 2002).165

For simplicity we will assume two extreme scenarios: (i) either the offspring carry all costs as described166

above (equation 1; scenario ‘offspring pay’) or (ii) the costs are completely covered by maternal investment167

(scenario ‘mother pays’). To keep both scenarios comparable we determine the maternally covered,168

kernel-dependent, costs by summing up the distance-dependent costs over the entire kernel (P (dk)) for169

all possible distance classes (dk),170

τ =

n∑
k=1

µd(dk)P (dk). (2)

Costs trade-off with fecundity (see also Burton et al., 2010; Fronhofer et al., 2011) and the mean number171
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of offspring is then calculated as172

λ = λ0(1− τ), (3)

with λ0 = 4 as our default choice.173

Note that in order to analyse the influence of relaxing this strong assumption of either ‘mother pays’174

or ‘offspring pays’ we ran two classes of additional numerical analyses. Firstly, we show that if both,175

mother and offspring, have to pay dispersal costs our results hold up to a considerable amount of costs176

paid by both (supporting information S3). Secondly, we allowed the allocation of costs to be itself an177

evolvable trait: depending on this trait a proportion of the distance dependent dispersal costs (µ0
d) is paid178

by the mother according to equation 2 and the remaining costs are paid by the offspring (equation 1).179

For all tested parameter combinations (table 1) no intermediate cost allocation strategy evolved and the180

evolutionarily stable strategy was full maternal investment, i.e. ‘mother pays’ (see supporting information181

S4).182

Competition and mortality183

No matter whether competition is for space, light or nutrients it will always depend on inter-individual184

distances. In addition and in contrast to previous models that assume annual organisms with non-185

overlapping generations (e.g. Travis et al., 2010; North et al., 2011) we include age-dependence since186

competition will be asymmetric between established trees and seedlings, for example. In our model,187

competition acts by increasing mortality, and not by decreasing fertility (figure 1). This allows us to188

derive a density-dependent individual mortality term, i.e. the probability of dying in the present time189

step (µi). For the form of this competition kernel — often termed zone or sphere of influence (for190

a review of modeling approaches, see Berger et al., 2008) — we assume a general and very flexible191

functional relationship (analyzed in detail by Roughgarden, 1974). This approach is similar to the sphere192

of influence model presented by Schiffers et al. (2011). The effect of an individual j on the focal individual193

i is calculated as194

µij = e−(∆ij/f)
γ aj
aj +Ha

, (4)

with f = σ
√
Γ(1/γ)/

√
Γ(3/γ), where Γ is the gamma function. The first term of the function reflects195

distance- and the second term age-dependence. ∆ij is the Euclidean distance between individuals i and196

j. σ is the standard deviation of the competition kernel and γ determines its kurtosis: γ = 2 yields a197

normal (mesokurtic) distribution, γ < 2 a leptokurtic distribution (narrow peak and fat tails), and γ > 2198

a platykurtic distribution (wide peak and thin tails). The kurtosis parameter (with γ = 2 as our default199

choice) thus determines the balance between localized competition and long-range competition, while the200

standard deviation (with σ = 1 as our default choice) scales the width of the competition kernel.201
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Age-dependence is a simple asymptotic function with a as the age of tree j and Ha as the half-202

saturation constant, i.e. the age at which a tree reaches half of its maximal competitive ability (with203

Ha = 3 as our default choice). Note that the age-dependent term is important since without it competition204

between adults and seedlings is symmetric.205

The total competition related mortality (µi) of individual i may additionally include a baseline mor-206

tality (µ0 = 0.1 as a standard value) which is density independent:207

µi = 1− (1− µ0)
∏
i ̸=j

(1− µij). (5)

Please see figure 1 for a summary of all mortality components. This figure includes the effects of all208

individuals in a landscape as in equation 5 and additionally illustrates the dominant effect of the focal209

individual.210

Numerical analyses211

All analyses were run in a world of 100 x 100 distance units with periodic boundary conditions. Depending212

on parameter combinations populations sizes varied roughly between 400 and over 7000 individuals.213

Computing time was set to tmax = 10, 000 time steps, a time span that allowed all model runs to reach214

equilibrium. The results shown below are means over 25 replicates. Please see table 1 for a summary of215

relevant parameters and tested values.216

Results217

Evolution of dispersal kernels218

In all scenarios without maternal investment, i.e. when the offspring pay distance-dependent dispersal219

costs according to equation 1, we find that the evolutionarily stable dispersal kernel is unimodal (fig-220

ure 2 A). This results from the interaction between the competition kernel, competition with related221

dispersers and dispersal costs (see figure 1). Increasing dispersal costs lead to narrower, more peaked and222

less fat-tailed kernels (figure 2 B). This is due to an increase in the slope of the dispersal cost function223

(figure 1).224

Maternal investment leads to bimodal kernels225

In general, maternal investment increases the occurrence of LDD, i.e. the weight of the kernel’s tail (fig-226

ure 2). Interestingly, maternal investment inverts the effect of dispersal costs on long-distance dispersal:227
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here increasing dispersal costs lead to an increase in tail weight (figure 2 D). In addition, the evolution-228

arily stable dispersal kernel for high dispersal costs is bimodal (figure 2 D) with an important proportion229

of propagules remaining very close to the maternal individual and a mass of offspring showing LDD. The230

inset in figure 2 D shows the same numerical analysis for an increased resolution of the dispersal kernel231

(distance class extent of 0.5 instead of the default of 1). Note that the bimodality we describe here occurs232

at the individual level and is not the result of a mixed strategy with coexisting short- and long-distance233

dispersers (supporting information S4).234

Dispersal costs235

A more detailed analysis of the influence of dispersal costs shows that, as one would assume, the mean236

dispersal distance decreases with costs in the ‘offspring pay’ scenario (figure 3 A). Yet, with maternal237

investment (‘mother pays’) the relationship becomes u-shaped, i.e. higher dispersal costs favour higher238

mean dispersal distances (figure 3 A). Clearly, this is due to the asymmetry and tail weight of the kernels239

(figure 2) since the median dispersal distance decreases monotonically with dispersal costs (figure 3 B).240

The median reaches a steady value which is defined by the width of the competition kernel (see also241

figure 4). The scenario assumed, i.e. distance costs paid by the offspring (‘offspring pay’) vs. kernel costs242

paid by the mother (‘mother pays’), does not influence the median dispersal distance.243

As mentioned above, increasing dispersal costs lead to narrower kernels if the offspring pay distance244

dependent dispersal costs (figure 3 C). However, in the case of maternal investment this tendency is245

reversed for sufficiently high dispersal costs (figure 3 C; here µ0
d > 0.2) which is due to the above246

described bimodality (figure 2 D).247

A similar pattern can be observed for tail weight (figure 3 D). In the ‘offspring pay’ scenario increasing248

dispersal costs reduce tail weight, here measured as the 95th percentile of the kernel. Maternal investment249

inverts this pattern: as soon as the kernel becomes bimodal its tail weight increases with dispersal costs250

(figure 3 D).251

Shape of the competition kernel252

The qualitative results presented above, i.e. the emergence of fat-tailed and bimodal kernels in scenarios253

with maternal investment, are robust against variation in all model parameters (figure 4 and supporting254

information S1). Not surprisingly, the width of the competition kernel influences the mean and the255

median of the dispersal kernel, i.e. the location of the peak (figure 4 A, B). Wider competition kernels,256

i.e., higher values of the standard deviation (σ), lead to bimodal dispersal kernels at lower dispersal costs257

in the ‘mother pays’ scenario (figure 4 C, D). The pattern is not lost for narrower competition kernels,258
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yet requires higher dispersal costs to emerge (µ0
d > 0.5; not shown).259

The kurtosis of the competition kernel (γ) has only very slight effects. More leptokurtic shapes260

lead to slightly smaller dispersal distances (figure 4 E, F) because the costs inflicted by competition261

decrease at a faster rate at small distances. As a consequence more platykurtic competition kernels lead262

to bimodality in ‘mother pays’ scenarios at lower dispersal costs (figure 4 G) and to more pronounced fat263

tails (figure 4 H).264

The shape, especially the height of the competition kernel, also depends on the focal individual’s265

age (equation 4). We find that the slower an individual’s competitive ability increases (‘slow growth’ in266

figure 4; larger values of the half-saturation constantHa) the smaller dispersal distances become (figure 4 I,267

J). Under such conditions the usual pattern of higher dispersal distances in scenarios with maternal268

investment is inverted (figure 4 J) which is due to a more pronounced bimodality (figure 4 K) with a269

higher peak at distance zero. This is primarily due to the lower competitive ability of a focal maternal270

individual. In turn, this pattern interacts with increasing dispersal costs and allows the emergence of a271

heavier tail (figure 4 L; black and grey solid lines intersect). Maternal investment allows to increase the272

amount of LDD, i.e. tail weight, by increasing the height of the peak at distance zero, i.e. the number of273

non-dispersers (see also equation 2).274

Discussion275

It has been recognized that in sessile organisms dispersal distance is mainly controlled by the maternal276

individual (see Starrfelt & Kokko, 2010, for an analysis of parent-offspring conflict). It is less well277

appreciated that the mother must also invest in the dispersal ability of its offspring (e.g. Wheelwright278

& Logan, 2004). Such an investment will necessarily come at a cost, i.e it will trade off with fertility279

or survival. It has been shown in other contexts that trade-offs may shape the evolution of dispersal280

considerably (e.g. Roff, 1994; Burton et al., 2010; Travis et al., 2010; Fronhofer et al., 2011; Travis281

et al., 2012). We here demonstrate for sessile organisms that trading fecundity for an increased survival282

of dispersing offspring, i.e. maternal investment, characteristically influences the form of the dispersal283

kernel. Particularly for high dispersal costs bimodal kernels emerge and, at the same time, the kernels284

become heavily fat-tailed. In contrast to previous studies that already demonstrate the evolution of285

bimodal distance pdfs (Starrfelt & Kokko, 2010) our model demonstrates the evolution of bimodality in286

both density and distance pdfs. These results prove to be robust against variation in all tested model287

parameters (figures 4 and supporting information). They even hold if the offspring were to pay a part of288

dispersal costs themselves (supporting information S3).289

By relaxing the somewhat arbitrary assumption of a world with discrete habitat patches and modelling290
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inter-individual competition explicitly at the individual level in continuous space through a competition291

kernel, our results represent an important step towards a better understanding of dispersal in sessile292

organisms such as plants. Our results from scenarios in which offspring pay distance-dependent dispersal293

costs (figure 2 A, B) are in good accordance with findings from Rousset & Gandon (2002). Yet, they294

show some distinct differences as our model assumes distance-dependent competition (competition ker-295

nels), maternal control of dispersal and overlapping generations. Due to decreasing kin competition and296

increasing (saturating) dispersal costs Rousset & Gandon (2002) also predict unimodal dispersal kernels297

in two-dimensional landscapes. By explicitly introducing competition for space we can show that the298

width of the competition kernel (σ) will determine the location of the kernel’s peak. Depending on their299

specific shape competition kernels may even increase tail weight since competitive interactions are not300

limited to the size of an arbitrarily defined grid-cell. Generally, our kernels are slightly more fat-tailed as301

we assume maternal control of dispersal (Starrfelt & Kokko, 2010) in comparison to Rousset & Gandon302

(2002). Finally, when offspring pay dispersal costs our model predicts that all offspring will disperse (fig-303

ure 2 A, B; the first distance class has a zero value) because the competition kernel drives all seeds away304

from the maternal individual. This will not necessarily hold for grid based models, especially if one grid305

cell may contain more than one individual. Rousset & Gandon (2002) for example, do predict a certain306

amount of non-dispersers. This effect is especially strong, as the modelled organisms are assumed to be307

annual in contrast to our model. For the same reasons Starrfelt & Kokko (2010) do not find unimodal308

kernels.309

In scenarios with maternal investment bimodality of the dispersal kernel emerges mainly because of310

two mechanisms: (i) as the mother pays dispersal costs defined by the dispersal kernel (equation 2)311

increasing the variance of the kernel through a bimodal distribution with a peak at zero (or at very small312

distances) allows the mother to decrease the costs while keeping the mean dispersal distance constant313

or even increasing it through a heavily fat tail. Thus, by reducing the dispersal distances of some314

offspring the mother may achieve LDD for other propagules. Higher dispersal distances are evolutionarily315

advantageous because they minimize kin competition (Hamilton & May, 1977; Rousset & Gandon, 2002)316

an effect known to be especially pronounced for maternal control of dispersal (Hamilton & May, 1977;317

Starrfelt & Kokko, 2010) . (ii) Furthermore, the maternal location has an interesting attribute that318

makes it attractive for seed deposition. In case of the mother’s death it characteristically implies a319

minimal influence of the nearest neighbours’ competition kernels (see figure 1, thin black line). Locally it320

maximizes an individual’s survival and non-dispersers will be able to inherit this locally optimal location321

(‘territorial inheritance’) after the mother’s death.322

It is immediately clear that the latter mechanism will be critically dependent on the assumed width323

of the first distance class. We therefore tested the impact of increasing the extent of this first class. Our324
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tests show that the bimodality reported here does indeed vanish for coarse grids but is stable for a width325

of the first distance class (d1) of up to 0 ≤ d ≤ 0.2 (see also figure 1). This results underlines the possible326

artifacts resulting from grid-based models in general.327

The two mechanisms discussed above also explain the influence of the age-specific component of328

the competition kernel (figure 4) and of fecundity (see supporting information S1). Increased local329

competition through fast growth leads to a reduction of kernel bimodality in scenarios with maternal330

investment. Although there is an advantage for mothers keeping a fraction of offspring close by for331

territorial inheritance fast growth leads to an important increase in local competition between the mother332

and her non-dispersing offspring and between these. This leads to a reduction to the peak at distance333

zero, i.e. the number of non-dispersers. The same effect will emerge from increased numbers of offspring.334

As the kernel costs resulting from the formation of a fat-tail are offset by the production of ‘cheaper’335

non-dispersers, reducing the latter will lead to a reduction of tail weight.336

Due to asymmetric competition between the mother and the offspring a majority of non-dispersers337

may actually die. This of course begs the question why mothers produce these offspring in the first place.338

If this was just a strategy to spare resources for the production of more expensive long-distance dispersers339

and these ‘cheap’ propagules were thus only produced to reduce the costs of offspring production, mothers340

could as well simply reduce the number of offspring produced and put all resources into long-distance341

dispersers. In order to explore this question we ran additional numerical analyses including evolvable342

fecundities and a trade-off between fecundity and baseline mortality (supporting information S5 and343

S6). Individuals reducing their fecundity could thus increase their survival. In all these model runs, the344

bimodality was evolutionarily stable (supporting information S5). Regardless of the form of the assumed345

trade-off function (concave, linear, convex) we observed evolution towards short lived, sometimes annual,346

but very fecund individuals showing an increasingly bimodal kernel (supporting information S6). Dytham347

& Travis (2006) analyse the concurrent evolution of longevity and dispersal distance. Their results show348

that shorter life spans lead to shorter dispersal distances. Although our model is significantly different,349

the increasing bimodality, i.e. the higher frequency of non-dispersers we find is a similar phenomenon. It350

results from reduced kin competition and the possibility of territorial inheritance. Yet, as the form of our351

kernel may evolve freely, a reduced life span does not lead to smaller dispersal distances in general. On352

the contrary, as noted above, in scenarios with maternal investment the kernels are bimodal and heavily353

fat-tailed with an important fraction of long-distance dispersers.354

Interestingly the occurrence of a bimodal kernel that generates non-dispersers and long-distance dis-355

persers parallels the co-occurrence of philopatrics and dispersers found in models of actively moving356

organisms that include a trade-off between fertility and dispersal ability (e.g. Roff, 1994; Fronhofer et al.,357

2011). Yet, as these models assume offspring control of dispersal and consider emigration rates only, the358
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underlying mechanisms are different (see also below). In recent work that incorporates such a trade-off359

into an explicit movement model Travis et al. (2012) show that emigration rates increase for high levels360

of investment. Although we also find more LDD in our model emigration rates actually decrease which361

is due to the kernel’s bimodality.362

In general, maternal investment, i.e. trading fecundity for an increased survival of dispersing offspring,363

is highly advantageous. It allows the persistence of stable populations despite low fecundities, high364

mortalities and high competition, conditions that otherwise lead to global extinctions. This can be seen,365

e.g., in the supporting information figure S1 A–D: for low fecundities and if the offspring pay distance366

dependent dispersal costs populations are not viable for dispersal costs µ0
d > 0.3. This is not the case367

in scenarios with maternal investment. Additional numerical analyses show that maternal investment368

allows populations to survive dispersal costs over 0.8 (not shown). Simulation experiments also show that369

the ‘mother pays’ strategy is evolutionarily stable (supporting information S4).370

To summarize so far and put our results in a broader context, if the offspring control dispersal the371

evolutionarily stable kernel must guarantee equal fitness expectations for all offspring (see Rousset &372

Gandon, 2002). This logic does not apply if dispersal is controlled maternally as we assume in this373

study: the parent-offspring conflict (discussed in the context of dispersal distances in Starrfelt & Kokko,374

2010) leads to larger dispersal distances, as the maternal individual maximizes its own inclusive fitness375

expectations by reducing kin competition. If the offspring pay dispersal costs, these costs are the only376

mechanism that restrain dispersal distance and counteract the effect of (kin) competition which drives377

seeds away from the maternal individual. This cost-benefit calculation is fundamentally changed if the378

mother also pays dispersal costs. Increasing dispersal costs lead to selection for non-dispersers in spite379

of strong competition with the maternal individual, as this allows the mother to reduce its investment in380

propagule dispersal ability, which in turn allows for more LDD. Simultaneously, selection seems to favour381

a reduction in longevity for an increase in fecundity. Ultimately, this may lead to highly fertile annual382

organisms with strongly bimodal dispersal kernels (see supporting information S5 and S6).383

Examples384

Our model is applicable to sessile organisms such as plants. Most plants will show maternal investment,385

at least to some degree, since fruit and seed production is obviously maternally regulated. The bimodal386

dispersal kernel which we predict can be realized for example by seed polymorphisms, a phenomenon387

that has been frequently observed (for a review, see Imbert, 2002). The Asteraceae Heterotheca latifolia388

for example shows a dimorphism in achene structure: while disc achenes, which have a pappus, are wind389

dispersed and responsible for LDD ray achenes are not (Venable & Levin, 1985). This polymorphic seed390

structure will lead to bimodality in the dispersal kernel and increased tail weight (see also van Mölken391
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et al., 2005; Brändel, 2007). The same effect can be achieved by polychory, i.e. the use of more than392

one seed dispersal agent (e.g., Berg, 1966; Jordano et al., 2007; Russo et al., 2006). For example in393

Prunus mahaleb small birds are responsible for short distance dispersal while fruits eaten by mammals394

and larger birds are dispersed over long distances (Jordano et al., 2007). In addition our results are395

in good accordance with the increasing evidence that multiple seed size strategies, directly leading to396

different dispersal distances, may generally be due to life-history trade-offs (competition-colonization or397

stress tolerance-fecundity trade-offs, see e.g. Jakobsson & Eriksson, 2003; Lönnberg & Eriksson, 2013).398

Of course, in purely wind-dispersed plants with monomorphic seeds such as e.g. modelled by Travis399

et al. (2010) trade-offs may also occur e.g. between plant height which influences dispersal distance and400

fertility. Such trade-offs may then lead to the evolution of different plant heights depending e.g. on401

habitat availability or local extinctions.402

In a very broad sense our results may be of significance for territorial animals, although the model403

has not been designed for actively moving animals. Of course, in this case competition will be more404

prone to act on fertility than on mortality, but the resulting patterns may be similar. A dimorphism can405

often be observed between non-dispersers that wait, eventually help their parents, and bet on territorial406

inheritance and dispersers that try to colonize new, eventually empty territories (e.g. Kokko & Ekman,407

2002).408

Simplifications409

As in any tractable model we include some simplifying assumptions, a number of which we have already410

dealt with throughout this paper. A central simplification we have made is that dispersal strategies,411

i.e., the dispersal kernel, are not age-dependent, although we assume overlapping generations. Maternal412

age-dependent dispersal has been analyzed by Ronce et al. (1998) who provide theoretical and empirical413

evidence that such a strategy is evolutionarily advantageous, for both maternal and offspring control414

of dispersal. As we have discussed above the emerging bimodal dispersal kernel is a result of cost415

optimization in order to allow LDD and at the same time insures territorial inheritance. Yet, these two416

aspects are advantageous respectively early and late in the life of an individual. We hypothesize that417

age-dependent kernels would be fat-tailed in early life stages and more biased towards short-distance418

dispersal and the production of non-dispersing offspring later on in order to reduce (kin) competition but419

still allow territorial inheritance.420

Evidently, dispersal could also occur through time (dormancy). Trade-offs and correlations between421

dormancy, longevity and spatial dispersal have been analysed theoretically and empirically (e.g. Rees,422

1993). These additional complexities are far beyond the scope of this article and will not be discussed in423

detail here. Note that dormancy as a bet-hedging strategy is especially relevant in variable environments424
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(for a review see e.g. Childs et al., 2010) that are not in the focus of this study.425

Obviously, the uniformity and stability of the landscape we assume here is a further simplification.426

Although space is continuous in our model, it is homogeneous and shows no habitat structure or turnover.427

As Hovestadt et al. (2001) predict fat-tailed dispersal kernels to emerge in autocorrelated landscapes, we428

are confident that the introduction of spatial structure would not alter our results fundamentally (for a429

detailed treatment of the influence of habitat structure on dispersal distance, see North et al., 2011). Of430

course, patch size would interact with the competition kernel and influence the evolving mean dispersal431

distance and the location of the dispersal kernel’s maximum or second peak for bimodal kernels. Yet,432

as the introduction of suitable and non-suitable habitat basically leads to an increase in dispersal costs433

we hypothesize that spatial structure would only underline our results for both scenarios. Especially in434

scenarios with maternal investment the bimodality of the dispersal kernel should be more pronounced,435

provided that patches are large enough to support more than one individual. A bimodal kernel is highly436

advantageous in fragmented landscapes with patch turnover as well, since the fat tail and resulting LDD437

allows individuals to colonize distant and empty patches. At the same time the non- and short distance-438

dispersers emerging from the same kernel in the next generation guarantee a successful and sustained439

establishment (see also North et al., 2011).440

Conclusions441

Although the concept of a dispersal kernel is not new only little work has been done on the evolution of442

the shape of dispersal kernels. In contrast to previous work (Hovestadt et al., 2001; Rousset & Gandon,443

2002; Starrfelt & Kokko, 2010) we have concentrated on two important aspects that have received little444

attention in this context up to now: (i) the effects of individual competition kernels in continuous space445

and (ii) maternal investment. We predict the emergence of heavily fat-tailed and bimodal dispersal446

kernels for sessile organism with overlapping generations.447
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Table and figure captions575

Table 1:576

Important model parameters, their meaning and tested values.577

578

Figure 1:579

The components of mortality. Dispersal costs (µd, dashed line) increase asymptotically with distance580

(equation 1, function shown for ‘offspring pay’ scenario). In addition we assume a distance- and density-581

independent, constant baseline mortality (µ0, dotted line). The shape of the competition kernel, is very582

flexible and can vary from leptokurtic to platykurtic (γ, see equation 4 and text for details, thick black583

line). Competition with other individuals than the focal individual (e.g. a mother tree) shows a minimum584

at the location of the focal individual (thin black line; data taken from from numerical analyses; smooth585

spline regression over the mean of 100 focal individuals of age a = 3 for each of 20 replicate simulation586

runs; smoothing parameter: λ = 0.3). The resulting total mortality a dispersing propagule experiences is587

depicted in grey. Note that mortality is a probability and the components therefore cannot be summed588

up directly. Parameters: γ = 2, σ = 1, a = 3, Ha = 3, µ0
d = 0.1, λ0 = 4 (for the numerical analyses).589

590

Figure 2:591

Maternal investment and the evolution of dispersal kernels. All four panels show evolutionarily stable592

dispersal kernels (distance pdfs). The upper row (A, B) depicts the influence of dispersal costs without593

maternal investment, i.e. when offspring pay distance-dependent dispersal costs according to equation 1.594

The competition kernel (equation 4) leads to unimodal and fat-tailed distributions (A). Increasing disper-595

sal costs lead to narrower and more peaked kernels (B). The lower row (C, D) shows kernels for scenarios596

with maternal investment, i.e. the mother pays kernel-dependent dispersal costs (equation 2) and reduces597

her fecundity in order to maximize offspring survival during dispersal (equation 3). Maternal investment598

leads to heavily fat-tailed kernels and to bimodality at high dispersal costs (D). The inset in panel D599

shows the same numerical analysis for an increased resolution of the dispersal kernel (distance class extent600

of 0.5 instead of the default of 1). Parameters: λ0 = 4, µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0
d = 0.1601
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(left panels; A, C) or µ0
d = 0.4 (right panels; B, D).602

603

Figure 3:604

Maternal investment and dispersal costs. The graphs represent a systematic analysis of the influence605

of dispersal costs (µ0
d) on mean (A), median (B), interquartile range (C) and the position of the 95th606

percentile (D) of the evolutionarily stable dispersal kernels. Here and in the following figures the solid607

line represents results for scenarios with maternal investment (‘mother pays’) and the dashed line without608

(‘offspring pay’). For ‘mother pays’ scenarios the mean dispersal distance shows a u-shaped relation with609

increasing dispersal costs while the median does not (A, B). The interquartile range (C) captures the610

emerging bimodality in ‘mother pays’ scenarios. The 95th percentile is a good indicator for fat tails (D).611

Parameter values: λ0 = 4, µ0 = 0.1, γ = 2, σ = 1, Ha = 3. The grey crosses represent data points and612

the lines are smooth spline regressions (smoothing parameter: λ = 0.3).613

614

Figure 4:615

Influence of the shape of the competition kernel. The competition kernel (figure 1 and equation 4) is616

determined by its width (standard deviation σ; panels A–D), by its kurtosis (γ, panels E–H) and by its617

height, which is a function of the focal individual’s age (half-saturation constantHa, panels I–L). As in the618

previous figure solid lines show results for scenarios with maternal investment (‘mother pays’) and dashed619

lines without (‘offspring pay’). Black curves always indicate scenarios in which the focal parameter value620

was halved and grey curves scenarios in which the value was doubled. The characteristic patterns shown621

before, i.e. bimodal and fat-tailed kernels for maternal investment, are stable. Wide kernels lead to larger622

dispersal distances (A, B), a more pronounced bimodality (C) and extremely fat tails (D). Bimodality623

emerges also with very narrow competition kernels, yet requires higher dispersal costs. More platykurtic624

competition kernels tend to underline the described effects, while leptokurtic competition kernels do not625

lead to a loss of fat tails or bimodality (E–H). Slow growth reduces dispersal distances and underlines626

the differences between scenarios with and without maternal investment (bimodality, K). Parameters:627

λ0 = 4, µ0 = 0.1, σ = 0.5 (narrow) or σ = 2 (wide), γ = 1 (leptokurtic) or γ = 4 (platykurtic), and628

Ha = 1.5 (fast growth) or Ha = 6 (slow growth). The lines are smooth spline regressions (smoothing629

parameter: λ = 0.3).630
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Tables and Figures

Table 1

parameter values meaning
λ0 2, 4, 8 fecundity
µ0 0.05, 0.1, 0.2 baseline mortality (density independent)
σ 0.5, 1, 2 width of the competition kernel (standard deviation)
γ 1, 2, 4 kurtosis of competition kernel
Ha 1.5, 3, 6 age-dependence of competition (half-saturation constant)
µ0
d 0.05, 0.1, 0.15, ... , 0.4 dispersal costs (per distance unit)
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Figure S1: Influence of fecundity and mortality. Solid lines show results for scenarios with maternal
investment (‘mother pays’) and dashed lines without (‘offspring pay’). Black curves always indicate
scenarios in which the focal parameter value was halved and grey curves scenarios in which the value
was doubled. Low fecundities (λ0) underline the effects described above (A–D), but higher fecundities do
not destroy the patterns, i.e., fat tails and bimodality for maternal investment still arise at sufficiently
high dispersal costs. Density independent baseline mortality (µ0; E–H) does not influence our results in
a quantitatively relevant way. Parameters: γ = 2, σ = 1, Ha = 3, λ0 = 2 (low fecundity) or λ0 = 8
(high fecundity), and µ0 = 0.05 (low mortality) or µ0 = 0.2 (high mortality). The lines are smooth spline
regressions (smoothing parameter: λ = 0.3).

1



0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

distance

re
la

tiv
e 

fr
eq

ue
nc

y

Figure S2: Evolutionarily stable dispersal kernel as a 2D histogram. This figure corresponds to figure 2 D
and shows the strategies of all individuals across all 25 replicate simulation runs. Clearly, the bimodality
occurs at the individual kernel level and is not a result of a mixed strategy at population level. Parameters:
λ0 = 4, µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.4.
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Figure S3: Maternal investment and the evolution of dispersal kernels. All four panels show evolutionarily
stable dispersal kernels (distance pdfs) for scenarios with maternal investment, i.e. the mother pays kernel-
dependent dispersal costs. Additionally, different level of direct dispersal costs paid by the offspring are
included. These results show that if both, mother and offspring, have to pay dispersal costs our results
hold up to a considerable amount of costs paid by both. Parameters: λ0 = 4, µ0 = 0.1, γ = 2, σ = 1,
Ha = 3, and µ0

d = 0.4 for the mother.
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Figure S4: Evolutionarily stable allocation of dispersal costs to mother vs. offspring. We here allowed
the allocation of costs to be itself an evolvable trait: depending on this trait a proportion of the distance
dependent dispersal costs (µ0

d) is paid by the mother and the remaining costs are paid by the offspring.
For all tested parameter combinations (table 1) no intermediate cost allocation strategy evolved and the
evolutionarily stable strategy was full maternal investment, i.e. ‘mother pays’. Note the scale of the
y-axis. The line corresponds to the our standard parameter combination.
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Figure S5: Maternal investment, baseline mortality - fertility trade-off, and the evolution of dispersal
kernels. All four panels show evolutionarily stable dispersal kernels (distance pdfs) for scenarios with
maternal investment, a trade-off between baseline mortality and fecundity and evolving fecundities. The
trade-off function is saturating and follows the general form µ0 = λ0/(λ0 + hsc) (see figure S6). Clearly,
bimodality is not affected by the inclusion of this additional trade-off. Parameters: λ0 = evolving,
µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.4.
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Figure S6: Maternal investment, baseline mortality - fertility trade-off, and the evolution of dispersal
kernels. The figure shows the evolutionarily stable fertility (mean and standard deviation) and the
corresponding baseline mortality for scenarios with maternal investment and a trade-off between baseline
mortality and fecundity. The grey lines depict a sample of tested trade-off functions (from top to bottom:
hsc = 8, 10, 12, 14). Here, the trade-off function is saturating and follows the general form µ0 = λ0/(λ0+
hsc). Similar results were obtained for linear and concave functions. Such trade-offs lead to highly
fertile annual organisms with strongly bimodal dispersal kernels (figure S5). Parameters: λ0 = evolving,
µ0 = 0.1, γ = 2, σ = 1, Ha = 3, and µ0

d = 0.4.
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