36 research outputs found

    Sibsonian and non-Sibsonian natural neighbour interpolation of the total electron content value

    Get PDF
    In radioastronomy the interferometric measurement between radiotelescopes located relatively close to each other helps removing ionospheric effects. Unfortunately, in case of networks such as LOw Frequency ARray (LOFAR), due to long baselines (currently up to 1500 km), interferometric methods fail to provide sufficiently accurate ionosphere delay corrections. Practically it means that systems such as LOFAR need external ionosphere information, coming from Global or Regional Ionospheric Maps (GIMs or RIMs, respectively). Thanks to the technology based on Global Navigation Satellite Systems (GNSS), the scientific community is provided with ionosphere sounding virtually worldwide. In this paper we compare several interpolation methods for RIMs computation based on scattered Vertical Total Electron Content measurements located on one thin ionospheric layer (Ionospheric Pierce Points—IPPs). The results of this work show that methods that take into account the topology of the data distribution (e.g., natural neighbour interpolation) perform better than those based on geometric computation only (e.g., distance-weighted methods).Peer ReviewedPostprint (published version

    Ionosphere sounding for pre-seismic anomalies identification (INSPIRE): results of the project and perspectives for the short-term earthquake forecast

    Get PDF
    The INSPIRE project was dedicated to the study of physical processes and their effects in ionosphere which could be determined as earthquake precursors together with detailed description of the methodology of ionospheric pre-seismic anomalies definition. It was initiated by ESA and carried out by an international consortium. The full set of key parameters of the ionospheric plasma was selected based on the retrospective analysis of the ground-based and satellite measurements of pre-seismic anomalies. Using this classification the multi-instrumental database of worldwide relevant ionospheric measurements (ionosonde and GNSS networks, LEO-satellites with in situ probes including DEMETER and FORMOSAT/COSMIC ROC missions) was developed for the time intervals related to selected test cases. As statistical processing shows, the main ionospheric precursors appear approximately 5 days before the earthquake within the time interval of 30 days before and 15 days after an earthquake event. The physical mechanisms of the ionospheric pre-seismic anomalies generation from ground to the ionosphere altitudes were formulated within framework of the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model. The processes of precursor’s development were analyzed starting from the crustal movements, radon emission and air ionization, thermal and atmospheric anomalies, electric field and electromagnetic emissions generation, variations of the ionospheric plasma parameters, in particular vertical TEC and vertical profiles of the electron concentration. The assessment of the LAIC model performance with definition of performance criteria for earthquake forecasting probability has been done in statistical and numerical simulation domains of the Global Electric Circuit. The numerical simulations of the earthquake preparation process as an open complex system from start of the final stage of earthquake preparation up to the final point–main shock confirms that in the temporal domain the ionospheric precursors are one of the most late in the sequence of precursors. The general algorithm for the identification of the ionospheric precursors was formalized which also takes into account the external Space Weather factors able to generate the false alarms. The importance of the special stable pattern called the “precursor mask” was highlighted which is based on self-similarity of pre-seismic ionospheric variations. The role of expert decision in pre-seismic anomalies interpretation for generation of seismic warning is important as well. The algorithm performance of the LAIC seismo-ionospheric effect detection module has been demonstrated using the L’Aquila 2009 earthquake as a case study. The results of INSPIRE project have demonstrated that the ionospheric anomalies registered before the strong earthquakes could be used as reliable precursors. The detailed classification of the pre-seismic anomalies was presented in different regions of the ionosphere and signatures of the pre-seismic anomalies as detected by ground and satellite based instruments were described what clarified methodology of the precursor’s identification from ionospheric multi-instrumental measurements. Configuration for the dedicated multiobservation experiment and satellite payload was proposed for the future implementation of the INSPIRE project results. In this regard the multi-instrument set can be divided into two groups: space equipment and ground-based support, which could be used for realtime monitoring. Together with scientific and technical tasks the set of political, logistic and administrative problems (including certification of approaches by seismological community, juridical procedures by the governmental authorities) should be resolved for the real earthquake forecast effectuation.In years 2014–2016 works were supported by the ESA Project “INSPIRE, ionosphere Sounding for Pre-seismic anomalies Identification Research (INSPIRE)” nr 4000,111,456/14/NL/ MV. The work is supported by the National Center for Research and Development, Poland, through Grant ARTEMIS (decision no. DWM/PL-CHN/97/2019, WPC1/ ARTEMIS/2019); The authors thank also the Ministry of Science and Higher Education (MSHE), Poland for granting funds for the Polish contribution to the International LOFAR Telescope “(MSHE decision no. DIR/ WK/2016/2017/05–1)” and for maintenance of the LOFAR PL-612 Baldy (MSHE decisions: no. 59/E-383/SPUB/SP/ 2019.1). This work is supported by the National Science Centre, Poland, through Grants 2017/25/B/ST10/00479 and 2017/27/B/ST10/02190.Peer ReviewedPostprint (published version

    Global monitoring of ionospheric weather by GIRO and GNSS data fusion

    Get PDF
    Prompt and accurate imaging of the ionosphere is essential to space weather services, given a broad spectrum of applications that rely on ionospherically propagating radio signals. As the 3D spatial extent of the ionosphere is vast and covered only fragmentarily, data fusion is a strong candidate for solving imaging tasks. Data fusion has been used to blend models and observations for the integrated and consistent views of geosystems. In space weather scenarios, low latency of the sensor data availability is one of the strongest requirements that limits the selection of potential datasets for fusion. Since remote plasma sensing instrumentation for ionospheric weather is complex, scarce, and prone to unavoidable data noise, conventional 3D-var assimilative schemas are not optimal. We describe a novel substantially 4D data fusion service based on near-real-time data feeds from Global Ionosphere Radio Observatory (GIRO) and Global Navigation Satellite System (GNSS) called GAMBIT (Global Assimilative Model of the Bottomside Ionosphere with Topside estimate). GAMBIT operates with a few-minute latency, and it releases, among other data products, the anomaly maps of the effective slab thickness (EST) obtained by fusing GIRO and GNSS data. The anomaly EST mapping aids understanding of the vertical plasma restructuring during disturbed conditionsPeer ReviewedPostprint (published version

    Towards the possibility to combine LOFAR and GNSS measurements to sense ionospheric irregularities

    Get PDF
    Inhomogeneities within the ionospheric plasma density affect trans-ionospheric radio signals, causing radio wave scintillation in the amplitude and phase of the signals. The amount of scintillation induced by ionospheric irregularities typically decreases with the radio wave frequency. As the ionosphere affects a variety of technological systems (e.g., civil aviation, financial operations) as well as low-frequency radio astronomy observations, it is important to detect and monitor iono- spheric effects with higher accuracy than currently available. Here, a novel methodology for the detection and characterization of ionospheric irregularities is established on the basis of LOFAR scintillation measurements at VHF that takes into account of the lack of ergodicity in the intensity fluctuations induced by scintillation. The methodology estimates the S 4 scintillation index originating from irregularities with spatial scales in the inertial sub-range of electron density fluctuations in the ionosphere. The methodology is illustrated by means of observations that were collected through the Polish LOFAR stations located in Bałdy, Borówiec and Łazy: its validation was carried out by comparing LOFAR VHF scintillation observations with independent GNSS observations that were collected through a high-rate receiver located near the LOFAR station in Bałdy as well as through geodetic receivers from the Polish ASG-EUPOS network. Two case stud- ies are presented: 31 March 2017 and 28 September 2017. The comparison between LOFAR S4 observations and independent ionospheric measurements of both scintillation and rate of change of TEC from GNSS reveals that the sensitivity of LOFAR and GNSS to ionospheric structures is different as a consequence of the frequency dependency of radio wave scintillation. Furthermore, it can be noticed that observations of LOFAR VHF scintillation can be utilised to detect plasma structures forming in the mid-latitude ionosphere, including electron density gradients occurring over spatial scales that are not necessarily detected through traditional GNSS measurements: the detection of all spatial scales is important for a correct monitoring and modelling of ionospheric processes. Hence, the different sensitivity of LOFAR to ionospheric structures, in addition to traditional GNSS ionospheric measurements, allows to expand the knowledge of ionospheric processes

    Interferometric imaging of the type IIIb and U radio bursts observed with LOFAR on 22 August 2017

    Get PDF
    Context. The Sun is the source of different types of radio bursts that are associated with solar flares, for example. Among the most frequently observed phenomena are type III solar bursts. Their radio images at low frequencies (below 100 MHz) are relatively poorly studied due to the limitations of legacy radio telescopes.Aims. We study the general characteristics of types IIIb and U with stria structure solar radio bursts in the frequency range of 20-80 MHz, in particular the source size and evolution in different altitudes, as well as the velocity and energy of electron beams responsible for their generation.Methods. In this work types IIIb and U with stria structure radio bursts are analyzed using data from the LOFAR telescope including dynamic spectra and imaging observations, as well as data taken in the X-ray range (GOES and RHESSI satellites) and in the extreme ultraviolet (SDO satellite).Results. In this study we determined the source size limited by the actual shape of the contour at particular frequencies of type IIIb and U solar bursts in a relatively wide frequency band from 20 to 80 MHz. Two of the bursts seem to appear at roughly the same place in the studied active region and their source sizes are similar. It is different in the case of another burst, which seems to be related to another part of the magnetic field structure in this active region. The velocities of the electron beams responsible for the generation of the three bursts studied here were also found to be different.Peer reviewe

    Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI

    No full text
    At equatorial and high latitudes, the intense ionospheric irregularities and plasma density gradients can seriously affect the performances of radio communication and satellite-based navigation systems; that represents a challenging topic for the scientific and engineering communities and operational use of communication and navigation services. The GNSS-based ROTI (rate of TEC index) is one of the most widely used indices to monitor the occurrence and intensity of ionospheric irregularities. In this paper, we examined the long-term performance of the ROTI in terms of finding the climatological characteristics of TEC fluctuations. We considered the different scale temporal signatures and checked the general sensitivity to the solar and geomagnetic activity. We retrieved and analyzed long-term time-series of ROTI values for two chains of GNSS stations located in European and North-American regions. This analysis covers three full years of the 24th solar cycle, which represent different levels of solar activity and include periods of intense geomagnetic storms. The ionospheric irregularities’ geographical distribution, as derived from ROTI, shows a reasonable consistency to be found within the poleward/equatorward boundaries of the auroral oval specified by empirical models. During magnetic midnight and quiet-time conditions, the equatorward boundary of the ROTI-derived ionospheric irregularity zone was observed at 65–70° of north magnetic latitude, while for local noon conditions this boundary was more poleward at 75–85 magnetic latitude. The ionospheric irregularities of low-to-moderate intensity were found to occur within the auroral oval at all levels of geomagnetic activity and seasons. At moderate and high levels of solar activity, the intensities of ionospheric irregularities are larger during local winter conditions than for the local summer and polar day conditions. We found that ROTI displays a selective latitudinal sensitivity to the auroral electrojet activity—the strongest dependence (correlation R > 0.6–0.8) was observed within a narrow latitudinal range of 55–70°N magnetic latitude, which corresponded to a band of the largest ROTI values within the auroral oval zone expanded equatorward during geomagnetic disturbances

    Sibsonian and non-Sibsonian natural neighbour interpolation of the total electron content value

    No full text
    In radioastronomy the interferometric measurement between radiotelescopes located relatively close to each other helps removing ionospheric effects. Unfortunately, in case of networks such as LOw Frequency ARray (LOFAR), due to long baselines (currently up to 1500 km), interferometric methods fail to provide sufficiently accurate ionosphere delay corrections. Practically it means that systems such as LOFAR need external ionosphere information, coming from Global or Regional Ionospheric Maps (GIMs or RIMs, respectively). Thanks to the technology based on Global Navigation Satellite Systems (GNSS), the scientific community is provided with ionosphere sounding virtually worldwide. In this paper we compare several interpolation methods for RIMs computation based on scattered Vertical Total Electron Content measurements located on one thin ionospheric layer (Ionospheric Pierce Points—IPPs). The results of this work show that methods that take into account the topology of the data distribution (e.g., natural neighbour interpolation) perform better than those based on geometric computation only (e.g., distance-weighted methods).Peer Reviewe

    Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy

    No full text
    The ultrafast excited state dynamics of the fluorescent protein Kaede has been investigated by employing time resolved fluorescence and transient absorption. Upon irradiation of its neutral state, the protein undergoes an efficient conversion to a state that fluoresces at longer wavelengths. The molecular basis of the photoconversion involves an expansion of the chromophore π-conjugation by formal β-elimination but details of the reaction pathway remain subject to debate. Based on the kinetics observed in experiments on the protein sample in both H2O and D2O buffers, we suggest that a light-initiated cleavage mechanism (20 ps) could take place, forming the neutral red state in which the red chromophore resides. Excitation of the neutral red form results in the formation of the red anionic species via two Förster resonance energy transfer (FRET) channels. FRET between red neutral and red anionic forms occurs within the tetramer with time constants of 13.4 ps and 210 ps. In contrast to literature proposals no ESPT was observed.status: publishe

    Revealing the Excited-State Dynamics of the Fluorescent Protein Dendra2

    No full text
    International audienceGreen-to-red photoconversion is a reaction that occurs in a limited number of fluorescent proteins and that is currently mechanistically debated. In this contribution, we report on our investigation of the photoconvertible fluorescent protein Dendra2 by employing a combination of pump-probe, up-conversion and single photon timing spectroscopic techniques. Our findings indicate that upon excitation of the neutral green state an excited state proton transfer proceeds with a time constant of 3.4 ps between the neutral green and the anionic green states. In concentrated solution we detected resonance energy transfer (25 ps time constant) between green and red monomers. The time-resolved emission spectra suggest also the formation of a super-red species, first observed for DsRed (a red fluorescent protein from the corallimorph species Discosoma) and consistent with peculiar structural details present in both proteins

    Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy

    No full text
    The ultrafast excited state dynamics of the fluorescent protein Kaede has been investigated by employing time resolved fluorescence and transient absorption. Upon irradiation of its neutral state, the protein undergoes an efficient conversion to a state that fluoresces at longer wavelengths. The molecular basis of the photoconversion involves an expansion of the chromophore π-conjugation by formal β-elimination but details of the reaction pathway remain subject to debate. Based on the kinetics observed in experiments on the protein sample in both H2O and D2O buffers, we suggest that a light-initiated cleavage mechanism (20 ps) could take place, forming the neutral red state in which the red chromophore resides. Excitation of the neutral red form results in the formation of the red anionic species via two Förster resonance energy transfer (FRET) channels. FRET between red neutral and red anionic forms occurs within the tetramer with time constants of 13.4 ps and 210 ps. In contrast to literature proposals no ESPT was observed
    corecore