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Abstract In radioastronomy the interferometric measure-

ment between radiotelescopes located relatively close to

each other helps removing ionospheric effects. Unfortu-

nately, in case of networks such as LOw Frequency ARray

(LOFAR), due to long baselines (currently up to 1500 km),

interferometric methods fail to provide sufficiently accu-

rate ionosphere delay corrections. Practically it means that

systems such as LOFAR need external ionosphere infor-

mation, coming from Global or Regional Ionospheric Maps

(GIMs or RIMs, respectively). Thanks to the technology

based on Global Navigation Satellite Systems (GNSS), the

scientific community is provided with ionosphere sounding

virtually worldwide. In this paper we compare several

interpolation methods for RIMs computation based on

scattered Vertical Total Electron Content measurements

located on one thin ionospheric layer (Ionospheric Pierce

Points—IPPs). The results of this work show that methods

that take into account the topology of the data distribution

(e.g., natural neighbour interpolation) perform better than

those based on geometric computation only (e.g., distance-

weighted methods).

Keywords TEC � Interpolation � Natural neighbour

interpolation

Introduction

Information regarding the state of the ionosphere is para-

mount for the performance of scientific and technological

infrastructures such as, for example, power grid networks,

pipelines and satellite-based navigation services (e.g., GPS,

GLONASS, and soon, Galileo and Beidou too).

It is well known that at short baselines (e.g., less than

*50 km), most of the ionospheric effects may be removed

by means of interferometric techniques. Otherwise, for

longer baselines, the ionospheric variability must be taken

into account.

Interferometric techniques are also widely used in

radioastronomy. Nevertheless, radio-telescope networks

that operate along baselines longer than 50 km may not be

able to remove the ionospheric delay of the signal by

means of interferometry between nearby stations. That is

the case of LOFAR project (http://www.lofar.org/), a net-

work of radio-telescopes in Europe that operates at the low

frequency band of the electromagnetic spectrum

(10–240 MHz) with baselines as long as 1500 km. Con-

sequently, LOFAR network requires ionospheric modelling

in order to minimize the degradation of the observed

signal.

Among several experiments and goals of LOFAR, the

ionosphere may affect the observational data that are used
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to constrain theoretical models of the epoch of the reion-

ization, solar science, space weather and cosmic mag-

netism (see www.lofar.org for further details). One of the

Polish LOFAR part tasks is high-resolution monitoring of

radio sources in cooperation with GNSS to study iono-

sphere influence on low-frequency radiowaves. Possibili-

ties of ionospheric, space weather and solar studies were

described by Dąbrowski et al. (2016).

The incapability of interferometric techniques of mini-

mizing the impact of the ionospheric delay on the signal

might be overcome by using either GIMs or RIMs which

provide insight into the state of the ionosphere. Indeed, the

International GNSS Service (IGS) provides GIMs through

four IGS Ionosphere Associate Analysis Centres (IAACs);

CODE, ESA (European Space Agency), JPL (Jet Propul-

sion Laboratory) and UPC (Universitat Politecnica de

Catalunya) (Komjathy et al. 2010; Schaer 1999).

These global ionospheric maps are computed using

Total Electron Content (TEC) data provided by GNSS-

based ground receivers (Hernández-Pajares et al. 2011).

Due to the lack of homogeneity of the GNSS networks

worldwide, interpolation techniques are used for filling the

gaps (Orus et al. 2005 and citations therein). However,

GIMs do not provide the highest resolution for local areas.

In such case, RIMs should be used instead (Jakowski et al.

2005).

There are few GNNS ground receiver networks that may

provide high-resolution RIMs, such as, for example,

GEONET (http://www.gsi.go.jp/), in Japan and CRTN in

California (http://sopac.ucsd.edu/). In Europe, EUREF

permanent network (http://www.epncb.oma.be/) has longer

inter-station distance than the abovementioned networks.

The accuracy of GIMs and RIMs depends on the accu-

racy of TEC data and ionospheric modelling. For example,

GIMs provided by the UPC are computed using tomo-

graphic Slant TEC (STEC) data (Hernandez-Pajares et al.

1999) and the use of fast and accurate ways of solving the

associated topological problem has also been studied (see

Hernández-Pajares et al. 1997). Then, gaps (due to the lack

of receivers in the Southern Hemisphere and the non-ho-

mogeneous distribution of GNSS ground receivers) are

filled by estimating the correlation between the estimated

uncertainties with the kriging method (Orus et al. 2005).

Other ionospheric modelling methods are data-assim-

ilative models (GAIM, at the Jet Propulsion Laboratory—

Schunk 2002; Pi et al. 2003, 2004, 2009; Hajj 2004; Wang

2004; Mandrake et al. 2005; Scherliess et al. 2006; Kom-

jathy et al. 2010), harmonic spherical functions (Schaer

1999; Choi et al. 2010; Han et al. 2013) and empirical

models (e.g., the International Reference Ionosphere pro-

ject—IRI, http://iri.gsfc.nasa.gov/) (Strangeways 2009;

Buresova et al. 2009).

It is also important to take into account the time scale of

the ionospheric variability. The time-scale spectrum spans

from seconds (e.g., scintillations) to years (Solar cycle),

thus making the ionospheric temporal variability modelling

a real challenge (Krankowski et al. 2007).

In general, the criteria to choose amongst several iono-

spheric modelling methods may be based on their use. For

example, for radio-telescope networks, it is important to

provide ionospheric information in real time within the

area of coverage. In this regard, tomographic models can

estimate the state of the ionosphere in real time (Hernán-

dez-Pajares et al. 2000, 2011).

As for the spatial resolution, any model or interpolation

method degrades the uncertainty of the raw STEC data, no

matter how good it may be. Consequently, for the com-

putation of RIMs, it is also of great importance to find the

best spatial modelling available, that is to say, the model

that yields the minimum discrepancy with real data.

In this regard, this work presents a comparison of sev-

eral interpolation methods used for computing RIMs over

Europe using GPS-ground receiver stations from the

EUREF network in Poland. All these methods use STEC

data computed by the UPC TOmographic Model of the

IONosphere software (UPC TOMION).

This work is organized as follows: the second section

presents a description of the interpolation methods; the

third section presents the STEC data set and the results; the

fourth section contains the solutions to some interpolation

problems; finally, the fifth section summarizes the

conclusions.

Description of chosen interpolation methods

Inverse distance weighting (IDW)

Inverse distance weighting can be considered as one of the

most intuitive and easiest methods of evaluating the

influence of values of certain phenomena measured in less

or more scattered data points with unknown values at any

arbitrary point.

The general idea of inverse distance weighting is the

lowering of influence with increasing distance between the

points. The result of the interpolation at each point is a

weighted average of the values of the sample or data set,

where the weights are decreasing proportionally to a power

function of increasing distance between the points (Du-

mitru 2013). As a degree of IDW we consider an expo-

nentiation of X lying in the denominator (meaning x-1 as

the first degree, x-2 as the second, and so on). For our

comparison we have used the second degree of IDW,

which is also the most commonly used one.
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Two scenarios of IDW method implementation can be

considered—global and local. The global IDW interpola-

tion assumes that all the data points have an influence on

the interpolated points. In our comparison we have used a

kind of local approach, where only an arbitrary number of

points (7—which was the average number of neighbours in

our natural interpolation) selected based on the closest

distance, is considered to influence the value of the inter-

polated point.In our comparison the values at each point

are evaluated using the following formula:

FðX; YÞ ¼
Xn

i¼1

wifi; ð1Þ

where n is the number of neighbouring points, fi is the

function value at each neighbouring point and wi is a

normalized weight:

wi ¼
d�2
iPn

i¼1 wifi
; ð2Þ

where d stands for the distance between each data point and

the interpolated point.

Polynomial interpolation

Polynomial fitting differs significantly from the other

methods. Indeed, the computed surface does not fit the data

points, but instead it lies within a certain distance from

them.

For the approximation of the polynomial coefficients,

a1, a2, …, an, we have used the Moore–Penrose pseu-

doinverse (see Moore 1920) based on the whole set of data

points for each epoch. Similarly to IDW, polynomials can

be evaluated to a certain degree, resulting in a variety of

computed surfaces (e.g., a plane, a bilinear surface, a cubic

area, etc.). In our comparison we have used a force method

to evaluate an optimal polynomial degree for each epoch

(of course in a certain range, as the pseudoinverse gives the

possibility of creating polynomials of a degree greatly

exceeding the number of data points).

Figure 1 shows the number of coefficients of the poly-

nomial equation in terms of its order. For the selected (6th)

order, the polynomial equation can be expressed as

follows:

f ðx; yÞ ¼
X6

i¼0

X6�i

j¼0

aijx
iy j

 !
; ð3Þ

where aij are the polynomial coefficients and x, y are the

coordinates of each point.

For low degree (up to 10), the polynomial method

returns a surface which approximates data smoothly, and it

is easily computed, resulting in a continuous surface that

easily provides a value for any arbitrary point.

Voronoi diagram and Delaunay triangulation

Natural neighbour interpolation is based on the Voronoi

diagram and Delaunay triangulation, which defines the

topology in terms of the distribution of nearest neighbours

around each point (Sukumar et al. 2001).

To illustrate the idea of Voronoi diagram (often called

Dirichlet tessellation or Thiessen diagram) we will consider

dataset that consisted of scattered points, called Voronoi sites.

Each site corresponds to a certain Voronoi cell (also

called Voronoi face), which defines the range of points that

are closer to the chosen site than to other sites. The Vor-

onoi diagram is simply the sum of cells corresponding to

all Voronoi sites (Fortune 1995). That leads to the con-

clusion that a Voronoi diagram is actually a realization of

the nearest neighbour interpolation (see Fig. 2).

Voronoi diagram is strictly related to the Delaunay trian-

gulation. Delaunay triangulation is the realization of a set of

triangles created in such way that each triangle circumcircle

does not have any Voronoi site in its interior (Fortune 1995).

Voronoi edge is a mid-perpendicular of a Delaunay

triangle edge. In other words, the Delaunay edge existence

determines the existence of Voronoi edge and vice versa.

Voronoi diagrams determine natural neighbourhood—

two Voronoi sites are each other’s natural neighbour if

there exists a Voronoi edge between them. The same rule

can be applied to the Delaunay triangulation—two points

are their own natural neighbours if they are linked by a

Delaunay edge (see Fig. 3).

Both Voronoi diagram and Delaunay triangulation can

be used in interpolation—but only Delaunay triangulation

can be used separately, as the easiest way to compute the

Voronoi diagram requires also a Delaunay triangulation.

Fig. 1 The polynomial

parameters for 6th order

polynomial equation in regard

to two variables (coordinates)
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Natural neighbour interpolation

As previously said, natural neighbour interpolation is a

method based on the Voronoi diagram. In calculations we

consider two orders of the diagram—the first containing

only scattered known data points, and the second order,

which is based on the first, but with one of the interpolated

points inserted into the data (Fig. 4).

The insertion of a new point into an existing Voronoi

diagram results in the creation of a new cell, the area of

which ‘steals’ parts of the neighbouring cells, while the

whole rest of the diagram remains unchanged.

The weights of all neighbours of the inserted point are

then evaluated as a ratio of the stolen (overlapping) area to

the area of the whole new cell, as shown by Eqs. 4 and 5

below (Sibson 1981):

fx ¼
XM

m¼1

amfm; ð4Þ

where fx is the value for the interpolated point, M is the

number of natural neighbours (number of neighbouring

Voronoi cells), fm describes the value of the m-th neighbour

and am is a weight coefficient computed with Eq. 5 as

follows:

am ¼ sm

s0

; ð5Þ

where sm is the stolen area of m-th cell and s0 is the whole

area of the new cell (see Fig. 5).

Overlapping areas can be computed in two different

ways. In the first scenario, the overlapping area is

acquired by subtracting the neighbouring cells area

before entering the new point and the same cell after the

introduction of such point (Harman 2008). The second

scenario is to compute the overlapping area as the area

of the intersection of the new cell and the neighbouring

cell.

The first scenario is easier to calculate, but much more

sensitive and exposed to errors caused by open Voronoi

cells. Those errors will be further discussed in later sections

of this work.

Fig. 2 Graphical comparison

between Voronoi diagram

(a) and discrete nearest

neighbour interpolation of

regular grid set of 10,000 points

(b)

Fig. 3 Voronoi diagram and Delaunay triangulation put together

(Voronoi edges are Delaunay edges’ mid-perpendiculars, but not the

reverse). Not every Voronoi edge can be seen
Fig. 4 Two orders of Voronoi diagram—the first (blue) consisting of

known points and their cells, and an overlapping cell of the inserted

(and then interpolated) point (red) of the second order
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Non-Sibsonian interpolation

The non-Sibsonian interpolation method is actually a nat-

ural neighbour method; therefore, it is also based on Vor-

onoi diagram computation. Nevertheless, unlike the

Sibsonian method, this method uses linear quantities

instead of areas. This approach solves some of the prob-

lems the Sibsonian method faces (e.g., open Voronoi cells).

According to Belikov et al. (1997), the interpolated

point can be computed as a linear combination of the

neighbours as follows:

fx ¼
XM

m¼1

amfm; ð6Þ

where fx is the value of the interpolated point x, M is the

number of natural neighbours (i.e., number of Voronoi cell

edges), fm is the value of the m-th neighbour and am is a

weight coefficient described by the equation given below:

am ¼ dm

hm
ð7Þ

with dm the Voronoi edge length and hm standing for half

the distance between the interpolated point x and the

Voronoi edge m (see Fig. 6).

Belikov et al. (1997) note that such a way of computing

weights is far easier and more efficient than the Sibsonian

approach, which is based on polygons’ areas. Moreover,

the non-Sibsonian method does not require building two-

order Voronoi diagrams. Finally, it is also free from some

area calculation problems, which are present in the Sib-

sonian natural neighbour method and will be further dis-

cussed in posterior sections.

Quasi-natural interpolation

Quasi-natural method is a composition of the inverse distance

weighting interpolation method and Delaunay triangulation.

We use prefix ,,quasi’’, as the method is not actually based on

Voronoi diagram and its features, like classical natural

methods. Delaunay triangulation is used to find the target set

of neighbour, which will substitute the ,,random set of points’’

described by the Shepard method (Dumitru 2013). Natural

neighbours chosen this way will gain weights equal to those in

Sheprad method described with the following equation:

wm ¼ 1

dp
x;m

; ð8Þ

where wm is the weight corresponding to the neighbour m,

dx,m is the distance between the target point x and its

neighbour m and p is a power factor. We will use p = 2 as

it is one of the most commonly used (Dumitru 2013).

A very important issue is the differentiation between

natural and nearest neighbours, as even in the local solution

the nearest neighbours could be not the same as natural

ones (see Figs. 7, 8).

Differentiation between those two groups of neighbours

is extremely important for irregularly scattered data.

Comparison between methods

Dataset

Exemplary computations were based on the dataset that

consisted of TEC value observations from 19 EUREF

Fig. 5 The area of the new cell divided into sections ‘stolen’ from

each neighbour

Fig. 6 Non-Sibsonian interpolation mechanism. Edges and distances

of the same colour correspond to pairs of dm and hm, respectively,

used to compute am
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Permanent Network (EPN) stations located within and

nearby the area of Poland (see Fig. 9). The data set pro-

vided by the UPC included Slant TEC (STEC) values for

each IPP. The STEC values were observed alongside the

lines of sight between the EPN station and every satellite in

view. Then it was computed into Vertical TEC (VTEC)

related to the proper IPP assuming a 450-km thin-shell

height as Fig. 10 shows. The mapping function used for the

computation of the VTEC is as follows:

VTEC ¼ STEC �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � Re

Re þ hion

cos e

� �2
s

ð9Þ

where e is the elevation between the receiver and satellite,

hion is the height of ionospheric thin layer and Re is the

Earth’s radius.

The IPPs of three stations: Borowiec (bor1), Bydgoszcz

(bydg) and Lodz (lodz) were taken as unknown for the

interpolation. Then their known VTEC values were used to

assess the performance of the interpolation method.

Those three stations have been chosen due to their loca-

tions. They are indeed surrounded by other stations from all

sides, thus avoiding extrapolation scenarios, which are out of

the scope of this work. As we show later, natural neighbour

method does not work well for extrapolation. Although inner

stations may have IPPs surrounded by open Voronoi cells,

the likelihood of such scenario happening is smaller than for

any other station closer to the border of the network.

Moreover, the interpolation was performed on an epoch-

basis and every unknown point was interpolated separately

and never added to the known dataset. This procedure was

aimed at avoiding potential error.

Considering the fact that the dataset contains 30-s interval

data for the whole day (24 h observations from 15 June 2015,

during quiet geomagnetic conditions after 2013 solar activity

peak), the observations of 16 stations from the EUREF net-

work provided 74400 interpolated points divided into 2880

one-epoch subsets, which is a good statistical sample for

assessing the performance of the proposed methods.

Results

For each point in each interpolation method we established

a level of confidence, including relative errors, standard

deviations (as we have the ,,true’’ values for the interpo-

lated variables) and root means squares for every whole

epoch.

Results are presented below (see Tables 1, 2, 3;

Figs. 11, 12, 13). Computation time was also taken into

account, as we will try to evaluate the possibility of using

natural methods to compute rapid, near-real time local TEC

values. Root mean squares, relative errors and standard

deviations are shown only for the second scenario of nat-

ural neighbour interpolation, as the results in both scenarios

are the same, but they are more distorted in the first one by

lost points (point-losing problem will be further analysed in

other sections).

Also, as it was said earlier, we have taken computation

time into account. Results are shown below (see Table 4).

The fastest method is undoubtedly the quasi-natural

neighbour method. The slowest methods are the Sibsonian

natural neighbour methods. Indeed, as they build two

Voronoi diagrams for each point they require longer

computational time. The difference of both Sibsonian

natural neighbour methods in terms of computational time

stems from the fact that the second scenario requires the

computation of two polygons intersection. Consequently, it

takes longer than simple subtraction of two numbers rep-

resenting areas of the corresponding Voronoi cells, which

is the method used in the first scenario. The non-Sibsonian

natural neighbour method requires building only one

Fig. 7 Natural neighbours (blue) of a certain point X

Fig. 8 Nearest neighbours (blue) of a certain point X
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Voronoi diagram and does not require any area computa-

tion at all. Weights are based on simple linear quantities

(distance between points and length of the Voronoi edge).

The fastest quasi-natural neighbour method does not build

any Voronoi diagrams at all as it is based on the easier (and

quicker) Delaunay triangulation method.

As shown above, we received some statistical informa-

tion about efficiency of each presented interpolation

method, but before we set final efficiency marks, we should

turn the attention to some problems we faced while con-

ducting interpolation using natural neighbour methods.

Troubleshooting

Losing points

The first problem with natural neighbour methods is that

not every point can be interpolated. For example, during

the process of computation some of them (see Table 5)

have not received any value.

The method based on the first scenario lost over 2500

times more points than the second one. Such huge difference

between both Sibsonian methods suggests that the compu-

tational method systematically fails under some circum-

stances for the first scenario. In further analysis we will show

that the second scenario method loses far more points than it

was presented in Table 5, i.e., the losses are simply hidden.

Six lost points of the natural neighbour method (second

scenario) are actually located outside the network (we

based our computations on IPPs, which are dependent on

rapidly changing position of satellite on the sky)—hence

the interpolation method failure.

The first scenario method fails to interpolate a point

when at least one of the neighbours corresponds with an

open Voronoi cell. Indeed, in such a case the area of the

Voronoi cell is actually infinite (see Fig. 14), which cor-

responds to a not-a-number computational result.

Fig. 9 Location of analysed EPN stations (stations taken as unknowns are marked with yellow symbol)
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Fig. 10 Exemplary location of observed IPPs (black dots) for chosen EPN stations (red stars) for epoch 1440 (12:00 UT)

Table 1 Averages of root mean

squares for each analysed

method (TECU)

Interpolation method Mean Min 1st Quartile Median 3rd Quartile Max

Natural 0.063 0.013 0.040 0.055 0.069 0.789

IDW 0.123 0.033 0.097 0.122 0.148 0.279

Quasi-natural 0.075 0.024 0.057 0.072 0.088 0.196

Non-Sibsonian 0.054 0.017 0.042 0.053 0.064 0.113

Polynomial 0.088 0.032 0.066 0.084 0.103 0.200

Table 2 Averages of relative

errors for each analysed method

(%)

Interpolation method Mean Min 1st Quartile Median 3rd Quartile Max

Natural 0.239 0.000 0.046 0.127 0.301 24.822

IDW 0.538 0.000 0.167 0.379 0.745 7.909

Quasi-natural 0.327 0.000 0.105 0.233 0.433 7.263

Non-Sibsonian 0.242 0.000 0.066 0.156 0.318 2.950

Polynomial 0.434 0.000 0.144 0.321 0.604 4.214
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Fig. 11 Histograms of root mean squares for a natural Sibsonian, b IDW, c quasi-natural, d non-Sibsonian and e polynomial methods (with

logarithmic scale on the y (vertical) axis)

Table 3 Averages of standard

deviations for each analysed

method (TECU)

Interpolation method Mean Min 1st Quartile Median 3rd Quartile Max

Natural 0.039 0.000 0.008 0.021 0.050 3.937

IDW 0.092 0.000 0.027 0.063 0.127 1.020

Quasi-natural 0.055 0.000 0.017 0.039 0.074 0.865

Non-Sibsonian 0.039 0.000 0.011 0.027 0.054 0.391

Polynomial 0.071 0.000 0.024 0.054 0.099 0.606
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Similarly to the second-scenario Sibsonian method, the

non-Sibsonian natural method fails not only in case of an

extrapolation situation, but also when the target point is too

close to the network border. In this situation the Voronoi

cell corresponding to the interpolated point is open (see

Fig. 15).

The interpolated point (marked with red boldface) is not

actually located outside the network, so one would expect

the method would be able to compute it. Nevertheless, the

open area of the Voronoi cell is infinite, thus preventing the

computation of the weight coefficients (based on the length

of those edges).

Efficiency drops

Another problem with the natural methods is that occa-

sionally the efficiency drops. This affects only the second

scenario of the Sibsonian method and is highly correlated

with hidden point losses, which were pointed in the pre-

vious section.

Fig. 12 Histograms of relative errors for a natural Sibsonian, b IDW, c quasi-natural, d non-Sibsonian and e polynomial methods (with

logarithmic scale on the y (vertical) axis)
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Fig. 13 Histograms of standard deviations for a natural Sibsonian, b IDW c quasi-natural, d non-Sibsonian and e polynomial methods (with

logarithmic scale on the y (vertical) axis)

Table 4 Computation time (in

seconds) of each analysed

method for the full set of 74,400

points, with the first epoch

containing 23 points and one

single IPP (Intel i7, 4 GB RAM,

500 GB HDD)

Interpolation method Full set (74,400 points) One epoch (23 points) One point

Natural (1st scenario) 581.2 0.1566 0.0075

Natural (2nd scenario) 2020.44 0.4773 0.0195

IDW 67.94 0.0311 0.0208

Quasi-natural 36.22 0.0174 0.0008

Non-Sibsonian 585.79 0.1564 0.0076

Polynomial 96.32 0.0442 0.0192
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The same problems affecting those previous two meth-

ods also affect the second scenario natural method. In this

case, the points are not lost but they provide wrong values.

Relative errors and standard deviation values (see Figs. 11,

12, 13) can be clearly seen on histograms of RMS, Acci-

dentally, there occur larger values than in other methods.

First, we should check the problem associated with an

open cell for the searched point when using the non-Sib-

sonian method. Figure 16 contains standard deviations for

the 72 points lost in non-Sibsonian natural neighbour

interpolation.

As shown, standard deviations (with the maximum value

of 3.937 TEC units -1 TECU = 1016 electrons/m2) can

reach almost 3 TECU. For some points the standard devi-

ation gets a smaller value, but as their behaviour is

impossible to predict, it is much safer to discard the open

cell points from the solution (there are very few of them—

less than 0.1% of all points) or at last flag them as ‘possible

to be wrong’. Detecting such points is very simple to

perform and will be shown afterwards.

The second problem—open neighbouring cell prob-

lem—is far more complex. To understand its nature, we

have to look closer at the geometry of Voronoi cells.

Overlapping areas should look like in Fig. 17.

When a neighbouring cell is open (i.e., with at least one

of its vertices laying to infinity), the geometry of over-

lapping areas is changed. The infinity-point is excluded by

the algorithm and the polygons are closed thereby ignoring

it. This causes the loss of one of the target cell vertices and,

consequently, it changes the geometry of the overlapping

areas. Such situation is presented in Fig. 18.

This leads to the undesirable reduction of one or more

weights. The easiest way to decect that is to compute the

relative difference between the sum of overlapping areas

Fig. 14 Open neighbouring cell problem in Sibsonian natural

method. Searched overlapping area (purple) is computed as the

difference of the whole cell area (before putting red cell into diagram)

and the diminished cell area (light-blue)

Fig. 15 Open searched cell problem in non-Sibsonian natural method
Fig. 16 Standard deviations (in TECU) distribution for 72 open

searched cells

Table 5 Lost points at each epoch (absolute and relative numbers in

whole set of 74,400 points)

Interpolation method Lost points (nominally) Lost points (%)

Natural (1st scenario) 16,017 21.53

Natural (2nd scenario) 6 0.01

IDW 0 0.00

Quasi-natural 0 0.00

Non-Sibsonian 72 0.10

Polynomial 0 0.00
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and the expected value equal to the Voronoi cell of inter-

polating point, as in Eq. 10.

D ¼ Sx � RSið Þ=Sx ð10Þ

where D is the deformation coefficient, Sx is the expected

Voronoi cell area and RSi is the sum of overlapping areas

(the same method allows to detect points convicted by the

previous problem as in such case the deform coefficient

will be unable to be computed). Figure 19 illustrates the

dependence of standard deviations on the level of

deformation.

Table 6 presents the total number of cells with deformed

area.

We received over 4600 points (over 6%) with their

corresponding deformed cell. Table 7 shows how the sta-

tistical distribution of standard deviation changes after

excluding all points with uncertain geometry.

It is clearly seen that excluding all cell-deformed points

solves the problem with large errors. However, such

operations require excluding over 6% of total amount of

points. Figure 20 shows that the vast majority of points

with standard deviation over 0.4 TECU have cells

deformed for more than 40%. As can be seen in Table 8,

there are 469 of such points, which is only 10% of all

excluded points. Table 8 also presents how the standard

deviation distribution would look like if we exclude only

those points with deformation coefficient above 40%.

The maximum value of standard deviation is not as low

as when all cell-deformed points were excluded, but still is

reduced from almost 4 TECU to less than 1 TECU and less

than 1% of points had to be excluded. This shows that not

only flagging suspected points, but also giving them some

kind of risk factor may be a good idea.

Fig. 17 Properly located overlapping areas

Fig. 18 Deformed overlapping area geometry caused by infinity-

vertex problem. Overlapping areas are computed as the green areas.

Orange ones are lost. Point marked with red diamond is excluded

because it lies on the infinity-heading line

Fig. 19 Dependence of standard deviations (upwards; in TECU) on

level of deformation (horizontally; in percent). The red line marks

standard deviation level of 0.4 TECU

Table 6 Numbers of points with cells deformed on certain level

Deformation Number of cells Percentage

(0.9:1i 72 0.10

(0.8:0.9i 54 0.07

(0.7:0.8i 22 0.03

(0.6:0.7i 42 0.06

(0.5:0.6i 133 0.18

(0.4:0.5i 146 0.20

(0.3:0.4i 281 0.38

(0.2:0.3i 528 0.71

(0.1:0.2i 1042 1.40

(0:0.1i 2302 3.09

Total 4622 6.21
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It should also be mentioned that this problem is not

mathematical. It is caused by limits of computers capabili-

ties—overlapping areas are deformed due to the infinity-

computing trouble. This problem could be also solved by

including boundaries and computing Voronoi diagrams

inside the closed area, but, despite this solution, it requires

using a special function, which is not so straightforward and,

what is more important, takes over seven times longer to

compute (the classic Voronoi based natural neighbour

method took about 30 min; see Table 4). Regarding the fact

that such a problem occurs rather rarely and only in situations

when the dataset is not sufficient, the use of Voronoi limiting

function should be considered for each interpolation case.

Final discussion and conclusion

We have presented a comparison of several interpola-

tion methods, namely two methods based on distance-

weights (IDW and Quasi-natural), two Voronoi-based

methods (natural and non-Sibsonian) and a polynomial

method.

For the comparison we have used STEC data computed

with UPC TOMION software from GPS ground-receivers

from EUREF network over Poland. The 30-s interval

dataset spans a period of 24 h from 15 June 2015, during

quiet geomagnetic conditions.

The natural neighbour method, in both Sibsonian and

non-Sibsonian approaches, provides relative errors over

two times smaller than the IDW method (mean value of

0.239, 0.242 and 0.538%, respectively) and almost two

times smaller than the outcomes of the polynomial inter-

polation with mean value of 0.434% (see Table 2). Similar

improvement can be seen in standard deviations—0.029

TECU for natural neighbour versus 0.092 TECU for IDW

and 0.071 TECU for polynomial interpolation (see

Table 3). Highly topology-dependent natural neighbour

methods provide the best accuracy as the TEC value

depends on its own topology. However, the Sibsonian

method in its both scenarios has to cope with many prob-

lems and point losses. Moreover, the more effective second

scenario-based method requires relatively high computa-

tion time (especially when opposed to ultra-rapid quasi

natural neighbour method). The solution to the trade-off

between accuracy and computational time might be the

non-Sibsonian method, which is also very topology-de-

pendent, but least sensitive to the open-cell problem.

Another solution may be the quasi-natural method, which

provides slightly worse, but still quite promising results

(see Tables 1, 2, 3). This method is only partially depen-

dent on the topology, which leads to the drop of accuracy,

but, on the other hand, it remains almost unaffected by all

topology-caused problems.

Also, a comparison between natural neighbour interpo-

lation and Kriging was considered and will be discussed in

future works.

When considering accuracy, the key issue is the way

interpolation methods tackle different topologies. To

illustrate this problem, let us consider the situation of a

Fig. 20 Exemplary set of equally distant neighbours

Table 8 Natural neighbour method standard deviations distribution after excluding open cell points and those with corresponding cells

deformed for more than 40%

Mean Min 1st

quartile

Median 2nd

quartile

Max Lost

points

Open cells

points

Deformed cells

points

Excluded points

total

Percentage

0.036 0.000 0.008 0.021 0.048 0.888 6 72 469 541 0.73

Table 7 Natural neighbour method standard deviations distribution after excluding all deformed and open cell points

Mean Min 1st

quartile

Median 2nd

quartile

Max Lost

points

Open cells

points

Deformed cells

points

Excluded points

total

Percentage

0.036 0.000 0.008 0.021 0.047 0.396 6 72 4622 4694 6.31
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point surrounded by six neighbours located in exactly the

same distance from the point, like in Fig. 20.

First, we should consider how the weights would look

like in the pure distance-based methods (IDW and quasi-

natural methods). In quasi natural method all the weights

will be equal to 0.16, as all six points are natural neigh-

bours and they are at the same distance of the interpolated

point. The IDW method—which depends on the defined

number of neighbours—may behave like quasi-natural

method but only if the number of neighbours is equal to

six. In other situations (neighbours number different then

six), IDW method will discard randomly one or more

neighbours or, if defined neighbours number is too large,

take some extra, non-neighbouring but nearby points into

calculation.

To illustrate the influence of such weight distribution,

we should assign some values to the points. Let us consider

the example shown in Fig. 21, where there are six values

distributed with a linear gradient.

The interpolated point is right in the middle, so it should

get a value approximately equal to the mean value of the

points at the top and that at the bottom. Nevertheless, in

quasi-natural and IDW methods all weights have the same

value, thereby biasing the result in favour of the most

populated cluster of points at the top.

Figure 22 shows the Voronoi diagram for those points in

Fig. 21. The shape of the Voronoi cell (for the non-Sib-

sonian method) and overlapping areas structure (for the

Sibsonian method) display how the influence of the points

at the top over the interpolated point is diminished with

respect to the one at the bottom. Since the weight coeffi-

cients are related to the size of the Voronoi cell and

overlapping areas (Eqs. 5 and 7, respectively), the smaller

the areas and Voronoi cells in the cluster of points, the

lower the values of the weight coefficients are.

To summarize, by taking into account the topology, the

result is more precise. This simple example helps to

explain why natural neighbour methods perform better

with non-homogenously distributed datasets than methods

solely based on relative distances.
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