396 research outputs found
Recommended from our members
New Frontiers in Newsgathering: A Case Study of Foreign Correspondents Using Chat Apps to Cover Political Unrest
Coverage of any breaking news event today often includes footage captured by eyewitnesses and uploaded to the social web. This has changed how journalists and news organizations not only report and produce news, but also how they engage with sources and audiences. In addition to social media platforms such as Twitter and Facebook, chat apps such as WhatsApp and WeChat are a rapidly growing source of information about newsworthy events and an essential link between participants and reporters covering those events.
To look at how journalists at major news organizations use chat apps for newsgathering during political unrest, the authors focus on a case study of foreign correspondents based in Hong Kong and China during and since the 2014 Umbrella Movement Hong Kong protests. Political unrest in Hong Kong and China often centers around civic rights and government corruption. The Umbrella Movement involved large-scale, sit-in street protests, rejecting proposed changes to Hong Kongâs electoral laws and demanding voting rights for all Hong Kong citizens.
Through a combination of observation and interviews with foreign correspondents, this report explores technologyâs implications for reporting political unrest: how and why the protestors and official sources used chat apps, and the ways foreign reporters used chat apps (which are typically closed platforms) for newsgathering, internal coordination, and information sharing
Centennial clonal stability of asexual Daphnia in Greenland lakes despite climate variability
Climate and environmental condition drive biodiversity at many levels of biological organization, from populations to ecosystems. Combined with paleoecological reconstructions, palaeogenetic information on resident populations provides novel insights into evolutionary trajectories and genetic diversity driven by environmental variability. While temporal observations of changing genetic structure are often made of sexual populations, little is known about how environmental change affects the longâterm fate of asexual lineages. Here, we provide information on obligately asexual, triploid Daphnia populations from three Arctic lakes in West Greenland through the past 200â300 years to test the impact of environmental change on the temporal and spatial population genetic structure. The contrasting ecological state of the lakes, specifically regarding salinity and habitat structure may explain the observed lakeâspecific clonal composition over time. Palaeolimnological reconstructions show considerable regional environmental fluctuations since 1,700 (the end of the Little Ice Age), but the population genetic structure in two lakes was almost unchanged with at most two clones per time period. Their local populations were strongly dominated by a single clone that has persisted for 250â300 years. We discuss possible explanations for the apparent population genetic stability: (a) persistent clones are generalâpurpose genotypes that thrive under broad environmental conditions, (b) clonal lineages evolved subtle genotypic differences unresolved by microsatellite markers, or (c) epigenetic modifications allow for clonal adaptation to changing environmental conditions. Our results motivate research into the mechanisms of adaptation in these populations, as well as their evolutionary fate in the light of accelerating climate change in the polar regions
Macroscopic effects of the spectral structure in turbulent flows
Two aspects of turbulent flows have been the subject of extensive, split
research efforts: macroscopic properties, such as the frictional drag
experienced by a flow past a wall, and the turbulent spectrum. The turbulent
spectrum may be said to represent the fabric of a turbulent state; in practice
it is a power law of exponent \alpha (the "spectral exponent") that gives the
revolving velocity of a turbulent fluctuation (or "eddy") of size s as a
function of s. The link, if any, between macroscopic properties and the
turbulent spectrum remains missing. Might it be found by contrasting the
frictional drag in flows with differing types of spectra? Here we perform
unprecedented measurements of the frictional drag in soap-film flows, where the
spectral exponent \alpha = 3 and compare the results with the frictional drag
in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of
the Reynolds number Re (a measure of the strength of the turbulence), we find
that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in
pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may
be predicted from the attendant value of \alpha by using a new theory, in which
the frictional drag is explicitly linked to the turbulent spectrum. Our work
indicates that in turbulence, as in continuous phase transitions, macroscopic
properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure
Compact HI clouds from the GALFA-HI survey
The Galactic Arecibo L-band Feed Array HI (GALFA-HI) survey is mapping the
entire Arecibo sky at 21-cm, over a velocity range of -700 to +700 km/s (LSR),
at a velocity resolution of 0.18 km/s and a spatial resolution of 3.5 arcmin.
The unprecedented resolution and sensitivity of the GALFA-HI survey have
resulted in the detection of numerous isolated, very compact HI clouds at low
Galactic velocities, which are distinctly separated from the HI disk emission.
In the limited area of ~4600 deg surveyed so far, we have detected 96 of
such compact clouds. The detected clouds are cold with a median T
(the kinetic temperature in the case in which there is no non-thermal
broadening) of 300 K. Moreover, these clouds are quite compact and faint, with
median values of 5 arcmin in angular size, 0.75 K in peak brightness
temperature, and cm in HI column density. Most of the
clouds deviate from Galactic rotation at the 20-30 km/s level, and a
significant fraction show evidence for a multiphase medium and velocity
gradients. No counterparts for these clouds were found in other wavebands. From
the modeling of spatial and velocity distributions of the whole compact cloud
population, we find that the bulk of the compact clouds are related to the
Galactic disk, and their distances are likely to be in the range of 0.1 to a
few kpc. We discuss various possible scenarios for the formation and
maintenance of this cloud population and its significance for Galactic ISM
studies.Comment: Accepted for publication in the Astrophysical Journa
The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D
The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out
a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela
Molecular Ridge, with the primary goal of identifying the coldest dense cores
possibly associated with the earliest stages of star formation. Here we present
the results from observations of the Vela-D region, covering about 4 square
degrees, in which we find 141 BLAST cores. We exploit existing data taken with
the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their
(single-temperature) spectral energy distributions, assuming a dust emissivity
index beta = 2.0. This combination of data allows us to determine the
temperature, luminosity and mass of each BLAST core, and also enables us to
separate starless from proto-stellar sources. We also analyze the effects that
the uncertainties on the derived physical parameters of the individual sources
have on the overall physical properties of starless and proto-stellar cores,
and we find that there appear to be a smooth transition from the pre- to the
proto-stellar phase. In particular, for proto-stellar cores we find a
correlation between the MIPS24 flux, associated with the central protostar, and
the temperature of the dust envelope. We also find that the core mass function
of the Vela-D cores has a slope consistent with other similar (sub)millimeter
surveys.Comment: Accepted for publication in the Astrophysical Journal. Data and maps
are available at http://blastexperiment.info
Measuring the Impact of Conservation : The Growing Importance of Monitoring Fauna, Flora and Funga
Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on.This paper was made possible by funding from the Swiss Network for International Studies to the University of Lausanne (L.F. and P.J.S.) and its partners under the project: "Unblocking the flow of biodiversity data for multi-stakeholder environmental sustainability management". The research was carried out, in part, by GNG at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). PAVB was supported by the project MACRISK-PTDC/BIA-CBI/0625/2021, through the FCT-FundacAo para a Ciencia e a Tecnologia. YNB acknowledges support from the Audemars-Watkins Foundation for the CBCR's protected area monitoring work featured in this paper.info:eu-repo/semantics/publishedVersio
Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga
Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on
The Simons Observatory microwave SQUID multiplexing detector module design
Advances in cosmic microwave background (CMB) science depend on increasing
the number of sensitive detectors observing the sky. New instruments deploy
large arrays of superconducting transition-edge sensor (TES) bolometers tiled
densely into ever larger focal planes. High multiplexing factors reduce the
thermal loading on the cryogenic receivers and simplify their design. We
present the design of focal-plane modules with an order of magnitude higher
multiplexing factor than has previously been achieved with TES bolometers. We
focus on the novel cold readout component, which employs microwave SQUID
multiplexing (mux). Simons Observatory will use 49 modules containing
60,000 bolometers to make exquisitely sensitive measurements of the CMB. We
validate the focal-plane module design, presenting measurements of the readout
component with and without a prototype detector array of 1728
polarization-sensitive bolometers coupled to feedhorns. The readout component
achieves a yield and a 910 multiplexing factor. The median white noise
of each readout channel is 65 . This impacts the
projected SO mapping speed by , which is less than is assumed in the
sensitivity projections. The results validate the full functionality of the
module. We discuss the measured performance in the context of SO science
requirements, which are exceeded.Comment: Accepted to The Astrophysical Journa
The Light Responsive Transcriptome of the Zebrafish: Function and Regulation
Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or âentrainedâ by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression
The Alkaline Hydrolysis of Sulfonate Esters: Challenges in Interpreting Experimental and Theoretical Data
Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem. 10, 2012, 8095) presented a nonlinear BrĂžnsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the BrĂžnsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data
- âŠ