307 research outputs found

    Extraction of fragments and waves after impact damage in particle-based simulations

    Get PDF
    The analysis of simulation results and the verification against experimental data is essential to develop and interpret simulation models for impact damage. We present two visualization techniques to post-process particle-based simulation data, and we highlight new aspects for the quantitative comparison with experimental data. As the underlying simulation model we consider the particle method Peridynamics, a non-local generalization of continuum mechanics. The first analysis technique is an extended component labeling algorithm to extract the fragment size and the corresponding histograms. The distribution of the fragment size can be obtained by real-world experiments as demonstrated in Schram and Meyer (Simulating the formation and evolution of behind armor debris fields. ARL-RP 109, U.S. Army Research Laboratory, 2005), Vogler et al. (Int J Impact Eng 29:735–746, 2003). The second approach focuses on the visualization of the stress after an impact. Here, the particle-based data is re-sampled and rendered with standard volume rendering techniques to address the interference pattern of the stress wave after reflection at the boundary. For the extraction and visual analysis, we used the widely-used Stanford bunny as a complex geometry. For a quantitative study with a simple geometry, the edge-on impact experiment (Schradin, Scripts German Acad Aeronaut Res 40:21–68, 1939; Strassburger, Int J Appl Ceram Technol 1:1:235–242, 2004; Kawai et al., Procedia Eng 103:287–293, 2015) can be applied. With these new visualization approaches, new insights for the quantitative comparison of fragmentation and wave propagation become intuitively accessible

    Linkages between geochemistry and microbiology in a proglacial terrain in the High Arctic

    Get PDF
    Proglacial environments are ideal for studying the development of soils through the changes of rocks exposed by glacier retreat to weathering and microbial processes. Carbon (C) and nitrogen (N) contents as well as soil pH and soil elemental compositions are thought to be dominant factors structuring the bacterial, archaeal and fungal communities in the early stages of soil ecosystem formation. However, the functional linkages between C and N contents, soil composition and microbial community structures remain poorly understood. Here, we describe a multivariate analysis of geochemical properties and associated microbial community structures between a moraine and a glaciofluvial outwash in the proglacial area of a High Arctic glacier (Longyearbreen, Svalbard). Our results reveal distinct differences in developmental stages and heterogeneity between the moraine and the glaciofluvial outwash. We observed significant relationships between C and N contents, δ13Corg and δ15N isotopic ratios, weathering and microbial abundance and community structures. We suggest that the observed differences in microbial and geochemical parameters between the moraine and the glaciofluvial outwash are primarily a result of geomorphological variations of the proglacial terrain

    Triage 4.0:On Death Algorithms and Technological Selection. Is Today’s Data- Driven Medical System Still Compatible with the Constitution?

    Get PDF
    Health data bear great promises for a healthier and happier life, but they also make us vulnerable. Making use of millions or billions of data points, Machine Learning (ML) and Artificial Intelligence (AI) are now creating new benefits. For sure, harvesting Big Data can have great potentials for the health system, too. It can support accurate diagnoses, better treatments and greater cost effectiveness. However, it can also have undesirable implications, often in the sense of undesired side effects, which may in fact be terrible. Examples for this, as discussed in this article, are discrimination, the mechanisation of death, and genetic, social, behavioural or technological selection, which may imply eugenic effects or social Darwinism. As many unintended effects become visible only after years, we still lack sufficient criteria, long-term experience and advanced methods to reliably exclude that things may go terribly wrong. Handing over decision-making, responsibility or control to machines, could be dangerous and irresponsible. It would also be in serious conflict with human rights and our constitution

    Characterisation of the passive permeability barrier of nuclear pore complexes

    Get PDF
    Nuclear pore complexes (NPCs) restrict uncontrolled nucleocytoplasmic fluxes of inert macromolecules but permit facilitated translocation of nuclear transport receptors and their cargo complexes. We probed the passive barrier of NPCs and observed sieve-like properties with a dominating mesh or channel radius of 2.6 nm, which is narrower than proposed earlier. A small fraction of diffusion channels has a wider opening, explaining the very slow passage of larger molecules. The observed dominant passive diameter approximates the distance of adjacent hydrophobic clusters of FG repeats, supporting the model that the barrier is made of FG repeat domains cross-linked with a spacing of an FG repeat unit length. Wheat germ agglutinin and the dominant-negative importin β45-462 fragment were previously regarded as selective inhibitors of facilitated NPC passage. We now observed that they do not distinguish between the passive and the facilitated mode. Instead, their inhibitory effect correlates with the size of the NPC-passing molecule. They have little effect on small species, inhibit the passage of green fluorescent protein-sized objects >10-fold and virtually block the translocation of larger ones. This suggests that passive and facilitated NPC passage proceed through one and the same permeability barrier

    American political affiliation, 2003–43: a cohort component projection

    Get PDF
    The recent rise and stability in American party identification has focused interest on the long-term dynamics of party bases. Liberal commentators cite immigration and youth as forces which will produce a natural Democratic advantage in the future while conservative writers highlight the importance of high Republican fertility in securing Republican growth. These concerns foreground the neglect of demography within political science. This paper addresses this omission by conducting the first ever cohort component projection of American partisan populations to 2043 based on survey and census data. A number of scenarios are modeled, but, on current trends, we predict that American partisanship will shift much less than the nation’s ethnic composition because the parties’ age structures are similar. Still, our projections find that the Democrats gain two to three percentage points from the Republicans by 2043, mainly through immigration, though Republican fertility may redress the balance in the very long term

    Prognostic value of negative stress cardiac magnetic resonance imaging in patients with moderate-severe coronary artery stenosis

    Get PDF
    ObjectiveThis study aims to evaluate the prognostic value of stress cardiac magnetic resonance (CMR) without inducible ischemia in a real-world cohort of patients with known severe coronary artery stenosis.BackgroundThe prognosis of patients with severe coronary artery stenosis and without inducible ischemia using stress CMR remains uncertain, even though its identification of functionally significant coronary artery disease (CAD) is excellent.Materials and methodsPatients without inducible ischemia and known CAD who underwent stress CMR between February 2015 and December 2016 were included in this retrospective study. These patients were divided into two groups: group 1 with stenosis of 50%–75% and group 2 with stenosis of >75%. The primary endpoint was defined as the occurrence of a major adverse cardiovascular event (MACE) [cardiac death, non-fatal myocardial infarction (MI), percutaneous coronary intervention (PCI), or coronary artery bypass grafting (CABG)].ResultsReal-world data collected from 169 patients with a median age of 69 (60–75) years were included. The median follow-up was 5.5 (IQR 4.1–6.6) years. Events occurred after a mean time of 3.0 ± 2.2 years in group 1 and 3.7 ± 2.0 years in group 2 (p = 0.35). Sixteen (18.8%) patients in group 1 and 23 (27.4%) patients in group 2 suffered from MACE without a significant difference between the two groups (p = 0.33). In group 2, one cardiac death (1.2%), seven non-fatal MI (8.3%), 15 PCI (17.9%), and one CABG (1.2%) occurred.ConclusionThe findings of this pilot study suggest that long-term outcomes in a real-world patient cohort with known severe and moderate coronary artery stenosis but without inducible ischemia were similar. Stress CMR may provide valuable risk stratification in patients with angiographically significant but hemodynamically non-obstructive coronary lesions

    Pre-existing virus-specific CD8+ T-cells provide protection against pneumovirus-induced disease in mice

    Get PDF
    Pneumoviruses such as pneumonia virus of mice (PVM), bovine respiratory syncytial virus (bRSV) or human (h)RSV are closely related pneumoviruses that cause severe respiratory disease in their respective hosts. It is well-known that T-cell responses are essential in pneumovirus clearance, but pneumovirus-specific T-cell responses also are important mediators of severe immunopathology. In this study we determined whether memory- or pre-existing, transferred virus-specific CD8 + T-cells provide protection against PVM-induced disease. We show that during infection with a sublethal dose of PVM, both natural killer (NK) cells and CD8 + T-cells expand relatively late. Induction of CD8 + T-cell memory against a single CD8 + T-cell epitope, by dendritic cell (DC)-peptide immunization, leads to partial protection against PVM challenge and prevents Th2 differentiation of PVM-induced CD4 T-cells. In addition, adoptively transferred PVM-specific CD8 + T-cells, covering the entire PVM-specific CD8 + T-cell repertoire, provide partial protection from PVM-induced disease. From these data we infer that antigen-specific memory CD8 + T-cells offer significant protection to PVM-induced disease. Thus, CD8 + T-cells, despite being a major cause of PVM-associated pathology during primary infection, may offer promising targets of a protective pneumovirus vaccine

    High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils

    Get PDF
    Background: Most of the carotid plaque MR studies have been performed using black-blood protocols at 1.5 T without parallel imaging techniques. The purpose of this study was to evaluate a multi-sequence, black-blood MR protocol using parallel imaging and a dedicated 4-channel surface coil for vessel wall imaging of the carotid arteries at 3 T. Materials and methods: 14 healthy volunteers and 14 patients with intimal thickening as proven by duplex ultrasound had their carotid arteries imaged at 3 T using a multi-sequence protocol (time-of-flight MR angiography, pre-contrast T1w-, PDw- and T2w sequences in the volunteers, additional post-contrast T1w- and dynamic contrast enhanced sequences in patients). To assess intrascan reproducibility, 10 volunteers were scanned twice within 2 weeks. Results: Intrascan reproducibility for quantitative measurements of lumen, wall and outer wall areas was excellent with Intraclass Correlation Coefficients >0.98 and measurement errors of 1.5%, 4.5% and 1.9%, respectively. Patients had larger wall areas than volunteers in both common carotid and internal carotid arteries and smaller lumen areas in internal carotid arteries (p < 0.001). Positive correlations were found between wall area and cardiovascular risk factors such as age, hypertension, coronary heart disease and hypercholesterolemia (Spearman's r = 0.45-0.76, p < 0.05). No significant correlations were found between wall area and body mass index, gender, diabetes or a family history of cardiovascular disease. Conclusion: The findings of this study indicate that high resolution carotid black-blood 3 T MR with parallel imaging is a fast, reproducible and robust method to assess carotid atherosclerotic plaque in vivo and this method is ready to be used in clinical practice

    Forces during cellular uptake of viruses and nanoparticles at the ventral side

    Get PDF
    Many intracellular pathogens, such as mammalian reovirus, mimic extracellular matrix motifs to specifically interact with the host membrane. Whether and how cell-matrix interactions influence virus particle uptake is unknown, as it is usually studied from the dorsal side. Here we show that the forces exerted at the ventral side of adherent cells during reovirus uptake exceed the binding strength of biotin-neutravidin anchoring viruses to a biofunctionalized substrate. Analysis of virus dissociation kinetics using the Bell model revealed mean forces higher than 30 pN per virus, preferentially applied in the cell periphery where close matrix contacts form. Utilizing 100 nm-sized nanoparticles decorated with integrin adhesion motifs, we demonstrate that the uptake forces scale with the adhesion energy, while actin/myosin inhibitions strongly reduce the uptake frequency, but not uptake kinetics. We hypothesize that particle adhesion and the push by the substrate provide the main driving forces for uptake

    UAV-Based forest health monitoring : a systematic review

    Get PDF
    CITATION: Ecke, S. et al. 2022. UAV-Based forest health monitoring : a systematic review. Remote Sensing, 14(13):3205, doi:10.3390/rs14133205.The original publication is available at https://www.mdpi.comIn recent years, technological advances have led to the increasing use of unmanned aerial vehicles (UAVs) for forestry applications. One emerging field for drone application is forest health monitoring (FHM). Common approaches for FHM involve small-scale resource-extensive fieldwork combined with traditional remote sensing platforms. However, the highly dynamic nature of forests requires timely and repetitive data acquisition, often at very high spatial resolution, where conventional remote sensing techniques reach the limits of feasibility. UAVs have shown that they can meet the demands of flexible operation and high spatial resolution. This is also reflected in a rapidly growing number of publications using drones to study forest health. Only a few reviews exist which do not cover the whole research history of UAV-based FHM. Since a comprehensive review is becoming critical to identify research gaps, trends, and drawbacks, we offer a systematic analysis of 99 papers covering the last ten years of research related to UAV-based monitoring of forests threatened by biotic and abiotic stressors. Advances in drone technology are being rapidly adopted and put into practice, further improving the economical use of UAVs. Despite the many advantages of UAVs, such as their flexibility, relatively low costs, and the possibility to fly below cloud cover, we also identified some shortcomings: (1) multitemporal and long-term monitoring of forests is clearly underrepresented; (2) the rare use of hyperspectral and LiDAR sensors must drastically increase; (3) complementary data from other RS sources are not sufficiently being exploited; (4) a lack of standardized workflows poses a problem to ensure data uniformity; (5) complex machine learning algorithms and workflows obscure interpretability and hinders widespread adoption; (6) the data pipeline from acquisition to final analysis often relies on commercial software at the expense of open-source tools.https://www.mdpi.com/2072-4292/14/13/3205Publisher's versio
    corecore