61 research outputs found

    CHiCP: a web-based tool for the integrative and interactive visualization of promoter capture Hi-C datasets.

    Get PDF
    UNLABELLED: Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets. AVAILABILITY AND IMPLEMENTATION: CHiCP is freely accessible from www.chicp.org and supports most major HTML5 compliant web browsers. Full source code and installation instructions are available from http://github.com/D-I-L/django-chicp CONTACT: [email protected] is the published version. It first appeared at http://bioinformatics.oxfordjournals.org/content/early/2016/04/26/bioinformatics.btw173

    CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.

    Get PDF
    Capture Hi-C (CHi-C) is a method for profiling chromosomal interactions involving targeted regions of interest, such as gene promoters, globally and at high resolution. Signal detection in CHi-C data involves a number of statistical challenges that are not observed when using other Hi-C-like techniques. We present a background model and algorithms for normalisation and multiple testing that are specifically adapted to CHi-C experiments. We implement these procedures in CHiCAGO ( http://regulatorygenomicsgroup.org/chicago ), an open-source package for robust interaction detection in CHi-C. We validate CHiCAGO by showing that promoter-interacting regions detected with this method are enriched for regulatory features and disease-associated SNPs

    Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition.

    Get PDF
    Transcriptional enhancers, including super-enhancers (SEs), form physical interactions with promoters to regulate cell-type-specific gene expression. SEs are characterized by high transcription factor occupancy and large domains of active chromatin, and they are commonly assigned to target promoters using computational predictions. How promoter-SE interactions change upon cell state transitions, and whether transcription factors maintain SE interactions, have not been reported. Here, we used promoter-capture Hi-C to identify promoters that interact with SEs in mouse embryonic stem cells (ESCs). We found that SEs form complex, spatial networks in which individual SEs contact multiple promoters, and a rewiring of promoter-SE interactions occurs between pluripotent states. We also show that long-range promoter-SE interactions are more prevalent in ESCs than in epiblast stem cells (EpiSCs) or Nanog-deficient ESCs. We conclude that SEs form cell-type-specific interaction networks that are partly dependent on core transcription factors, thereby providing insights into the gene regulatory organization of pluripotent cells.P.J.R.-G. is supported by the Wellcome Trust (WT093736), Biotechnology and Biological Sciences Research Council (BB/M022285/1 and BB/P013406/1), and the European Commission Network of Excellence EpiGeneSys (HEALTH-F4-2010-257082). This work was also supported by the following grants to P.F.: Medical Research Council (MR/L007150/1, MC_UP_1302/1, MC_UP_1302/3, MC_UP_1302/5), and Biotechnology and Biological Sciences Research Council (BB/J004480/1)

    Author Correction: Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks (Nature Communications, (2018), 9, 1, (2526), 10.1038/s41467-018-04931-0)

    Get PDF
    In the original version of the Article, the gene symbol for tissue factor pathway inhibitor was inadvertently given as ‘TFP1’ instead of ‘TFPI’. This has now been corrected in both the PDF and HTML versions of the Article

    Identifying Human Naïve Pluripotent Stem Cells - Evaluating State-Specific Reporter Lines and Cell-Surface Markers.

    Get PDF
    Recent reports that human pluripotent stem cells can be captured in a spectrum of states with variable properties has prompted a re-evaluation of how pluripotency is acquired and stabilised. The latest additions to the stem cell hierarchy open up opportunities for understanding human development, reprogramming, and cell state transitions more generally. Many of the new cell lines have been collectively termed 'naïve' human pluripotent stem cells to distinguish them from the conventional 'primed' cells. Here, several transcriptional and epigenetic hallmarks of human pluripotent states in the recently described cell lines are reviewed and evaluated. Methods to derive and identify human naïve pluripotent stem cells are also discussed, with a focus on the uses and future developments of state-specific reporter cell lines and cell-surface proteins. Finally, opportunities and uncertainties in naïve stem cell biology are highlighted, and the current limitations of human naïve pluripotent stem cells considered, particularly in the context of differentiation.Our research is funded by the BBSRC (BB/P013406/1, BB/M022285/1) and MRC (MR/J003808/1)

    Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation

    Get PDF
    Chromosome conformation is an important feature of metazoan gene regulation; however, enhancer–promoter contact remodeling during cellular differentiation remains poorly understood. To address this, genome-wide promoter capture Hi-C (CHi-C) was performed during epidermal differentiation. Two classes of enhancer–promoter contacts associated with differentiation-induced genes were identified. The first class ('gained') increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class ('stable') were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation

    Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants

    Get PDF
    Background:Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. Methods:We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. Results: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. Conclusions:These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs
    • …
    corecore