15 research outputs found

    Asymmetric response of forest and grassy biomes to climate variability across the African Humid Period : influenced by anthropogenic disturbance?

    Get PDF
    A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental‐scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE‐21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental‐scale vegetation change

    Paléoenvironnements enregistres dans une carotte marine du golfe de Guinée depuis 225 000 ans : analyse pollinique

    No full text
    La Palynologie, grĂące aux pollens et spores retrouvĂ©s dans les sĂ©diments, permet la reconstitution des vĂ©gĂ©tations productrices, ces pollens et spores se fossilisant trĂšs bien dans des milieux pauvres en oxygĂšne et Ă  l’abri de la lumiĂšre. Une carotte marine, prĂ©levĂ©e dans le Golfe de GuinĂ©e au large de la CĂŽte d’Ivoire, a fait l’objet d’analyses polliniques qui ont permis de reconstituer les variations de la vĂ©gĂ©tation depuis 225 000 ans BP (stade isotopique 7). Les repĂšres chronologiques ont Ă©tĂ© Ă©tablis par comparaison avec les travaux de MARTINSON et al. (1987). Les principales formations vĂ©gĂ©tales actuelles de cette rĂ©gion intertropicale sont constituĂ©es par les forĂȘts humides sempervirentes et semi-decidues (zone guinĂ©enne) et les forĂȘts claires et savanes (zone soudanienne). L’analyse pollinique permet de retrouver les principaux taxons caractĂ©ristiques de ces formations. Le diagramme indique 13 zones polliniques montrant les variations des forĂȘts humides et des savanes. Les corrĂ©lations sont Ă©tablies avec la courbe de l’oxygĂšne isotopique. On retrouve ainsi, sous l’Equateur, les Ă©pisodes climatiques globaux dont le stade 5, interglaciaire humide avec les interstades 5e (124 000 ans BP), correspondant Ă  l’EĂ©mien d'Europe, 5c et 5a humides Ă©galement ; 5d et 5b sont nettement plus frais et caractĂ©risĂ©s par la prĂ©sence de Podocarpus. La concordance humide s’établit Ă©galement avec les stades 7, 3 et 1 (partiellement). Les climats plus secs, indiquĂ©s par les taxons de savane, surtout les Gramineae, apparaissent aux stades 6, 4 et 2 (18 000 ans BP). Les fluctuations des vĂ©gĂ©tations montrent les perturbations climatiques naturelles importantes qui ont marquĂ© cette pĂ©riode quaternaire rĂ©cente.Palynology, from sedimented pollen and spores, permits the reconstruction of the past vegetational communities. Pollen and spores fossilize in sediments without light and when the oxygen is scarce. A marine core taken in the Guinea Gulf from the Ivory Coast margin, is studied by the pollen analysis. This analysis has enabled the reconstruction of the paleovegetational evolution since 225 000 years BP. The chronology is estimated on the base of the MARTINSON & al. (1987) studies. The present regional vegetational groups are chiefly determined by the rain forests (Guinean zone) and the savannas (Sudanian zone) and are shown by the pollen analysis. 13 pollen zones are correlated with the isotopic stratigraphy of this sequence. The global climatic events are 6, 4 and 2(18 000 years BP) considered as dry stages on the one hand, and 7, 5, 3 and 1 as humid stages on the other hand. During the stage 5, the quantity of Podocarpus pollen increases in the spectra (5d and 5b) and marks an important paleoclimatic event: cool global changes. The quantity of rain forest pollen increases during the substage 5e corresponding to European "Eemian" (124 000 years BP), and stages 5c and 5a: they mark a global humid paleoclimate. The vegetational changes show the natural paleoclimatic changes which marked this recent quaternary recent perio

    ASPECTS IRM DE LA COXARTHROSE DESTRUCTRICE RAPIDE

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Dynamique Ă  long terme des Ă©cosystĂšmes forestiers intertropicaux

    No full text

    Plant migration and plant communities at the time of the "Green Sahara"

    Get PDF
    Around 8500 cal years BP, at the time of the maximum of the African Humid Period, lakes and wetlands expanded in the present-day Sahara while large paleodrainages were formed or re-actived, in response to an orbitally-induced increase in monsoon rainfall. It has been suggested that the direct consequence of this increase in rainfall was the northward displacement of the Sahara/Sahel boundary, thought to have reached 23 degrees N in central and eastern Africa. Here, we show a more complex situation characterized by an increase in biodiversity as the desert accommodated more humid-adapted species from tropical forests and wooded grasslands: tropical plant species now found some 400 to 500 km to the south probably entered the desert as gallery-forest formations along rivers and lakes where they benefited from permanent fresh water. At the same time, Saharan trees and shrubs persisted, giving rise to a vegetation that has no analogue today. In this article, we present distribution maps of selected plant species to show both the amplitude of the vegetation change compared to the present and the composition of the past plant communities. We also estimate the migration rate of tropical plant taxa. to their northernmost position in the Sahara. This study is based on the use of several data sets: a data set of the modern plant distribution in northern Africa and a data set of modem and fossil pollen sites (from the African Pollen Database, http://fpd.mediasfrance.org/ and http://medias.obs-mip.fr/apd/). To cite this article: J. Watrin et al., C R. Geoscience 341 (2009). (C) 2009 Published by Elsevier Masson SAS on behalf of Academie des sciences

    Enregistreurs et indicateurs de l’évolution de l’environnement en zone tropicale

    No full text
    Nombre d'Ă©conomistes et de gĂ©ographes contestent la pertinence des Sciences de la Nature dans les Ă©tudes de DĂ©veloppement. Pour beaucoup le concept de tropicalitĂ© n'a guĂšre de rĂ©alitĂ©. Et pourtant la spĂ©cificitĂ© du monde intertropical est d'une Ă©vidence troublante : un "Monde sans hiver" (1993) du botaniste Francis HALLÉ vient de le rappeler avec bon sens. Le domaine tropical regroupe plus de 65 % de la population mondiale et la majoritĂ© des pays pauvres sur 40 % des terres Ă©mergĂ©es. La plupart des ressources fossiles (charbon, pĂ©trole, mĂ©taux) se sont Ă©laborĂ©es en conditions tropicales. Le monde tropical concerne donc tous les hommes. En privilĂ©giant les Ă©tudes de terrain et l'intĂ©rĂȘt des marqueurs de l'Ă©volution des milieux, les auteurs montrent l'infinie variĂ©tĂ© des environnements tropicaux et des comportements. Mais la dĂ©stabilisation anthropique des milieux s'est accĂ©lĂ©rĂ©e au cours du XXe siĂšcle. Sont mis en Ă©vidence les enregistreurs et les indicateurs des Ă©volutions Ă  court et Ă  long terme : milieux de dĂ©pĂŽts, indicateurs des sols et de la vĂ©gĂ©tation, ressources en eau, crises climatiques et rurales, littoraux et montagnes. Cette vision rĂ©solument gĂ©ographique et Ă  long terne s'oppose Ă  une vision Ă©conomiste et Ă  courte vue, imposĂ©e par le systĂšme financier mondial. La gestion de notre Environnement devrait-elle se soumettre aux stratĂ©gies de DĂ©veloppement comme le suggĂšrent certaines conclusions du Sommet de Rio ? L'homme a peu Ă  peu domestiquĂ© les paysages tropicaux, sans pour autant gommer leur spĂ©cificitĂ©. Notre environnement s'adapte en permanence, avec ou sans l'Homme, depuis des millions d'annĂ©es. Si l'Homme veut conserver sa place, il ne doit pas se laisser entraĂźner par l'utopie d'un "possibilisme" rĂ©gi par les intĂ©rĂȘts immĂ©diats des pays riches. Plus que jamais Environnement et DĂ©veloppement sont liĂ©s. En effet la croissance dĂ©mographique des pays tropicaux et ses consĂ©quences pour la survie de l'HumanitĂ© dĂ©pendront d'une gestion Ă  long terme de notre environnement, d'une conception en mosaĂŻques des amĂ©nagements et de la sauvegarde des ressources peu renouvelables
    corecore