1,516 research outputs found
Transcriptional immune response in mesenteric lymph nodes in pigs with different levels of resistance to Ascaris suum
AbstractA single nucleotide polymorphism on chromosome 4 (SNP TXNIP) has been reported to be associated with roundworm</jats:p
Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. <it>Actinobacillus pleuropneumoniae</it> (APP) causes serious lung infections in pigs. Severe damage to the lungs, in many cases deadly, is caused by toxins released by the bacterium and to some degree by host mediated tissue damage. However, understanding of the role of microRNAs in the course of this infectious disease in porcine is still very limited.</p> <p>Results</p> <p>In this study, the RNA extracted from visually unaffected and necrotic tissue from pigs infected with <it>Actinobacillus pleuropneumoniae</it> was subjected to small RNA deep sequencing. We identified 169 conserved and 11 candidate novel microRNAs in the pig. Of these, 17 were significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, miR-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection.</p> <p>Conclusions</p> <p>This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend annotation of microRNA in pig and provide insight into the role of a number of microRNAs in regulation of bacteria induced immune and inflammatory response in porcine lung.</p
Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity
Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells.
Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity
Gender and obesity specific MicroRNA expression in adipose tissue from lean and obese pigs
Obesity is a complex condition that increases the risk of life threatening diseases such as cardiovascular disease and diabetes. Studying the gene regulation of obesity is important for understanding the molecular mechanisms behind the obesity derived diseases and may lead to better intervention and treatment plans. MicroRNAs (miRNAs) are short non-coding RNAs regulating target mRNA by binding to their 3'UTR. They are involved in numerous biological processes and diseases, including obesity. In this study we use a mixed breed pig model designed for obesity studies to investigate differentially expressed miRNAs in subcutaneous adipose tissue by RNA sequencing (RNAseq). Both male and female pigs are included to explore gender differences. The RNAseq study shows that the most highly expressed miRNAs are in accordance with comparable studies in pigs and humans. A total of six miRNAs are differentially expressed in subcutaneous adipose tissue between the lean and obese group of pigs, and in addition gender specific significant differential expression is observed for a number of miRNAs. The differentially expressed miRNAs have been verified using qPCR. The results of these studies in general confirm the trends found by RNAseq. Mir-9 and mir-124a are significantly differentially expressed with large fold changes in subcutaneous adipose tissue between lean and obese pigs. Mir-9 is more highly expressed in the obese pigs with a fold change of 10 and a p-value < 0.001. Mir-124a is more highly expressed in the obese pigs with a fold change of 114 and a p-value < 0.001. In addition, mir-124a is significantly higher expressed in abdominal adipose tissue in male pigs with a fold change of 119 and a p-value < 0.05. Both miRNAs are also significantly higher expressed in the liver of obese male pigs where mir-124a has a fold change of 12 and mir-9 has a fold change of 1.6, both with p-values < 0.05
Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs
Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function
- …