102 research outputs found

    Geology and Structure of the Western and Southern Margins of Twin Sisters Mountain, North Cascades, Washington

    Get PDF
    Detailed mapping of the Goat Mountain dunite and the western and southern margins of the Twin Sisters dunite indicates that the structural setting of these bodies is dominated by high-angle northwest-trending fault zones. The Goat Mountain dunite overlies rocks of the Chilliwack Group and Yellow Aster Complex as a lowangle, west-dipping slab approximately 2500 feet thick. Cretaceous phyllite west of Goat Mountain overlies Chilliwack Group rocks along a similar low-angle west-dipping fault contact. These structures are both truncated by high-angle fault zones. The timing of faulting is poorly constrained. High-angle faulting is at least post-Eocene through Holocene (?), and may have begun as early as Late Cretaceous. Thrust emplacement of the Cretaceous phyllite over rocks of the Chilliwack Group may or may not have been contemporaneous with dunite emplacement

    AACR2r e necessidades de usuários: o papel da representação na recuperação de partituras

    Get PDF
    The aim is to study the care needs of the users of the Conservatory "Cacilda Becker, Pirassununga, SP rules for descriptive representation of documents in the established musical AACR2R. The study was conducted among piano teachers to identify their needs for search and recovery of piano scores in the local collection. This research is justified given that the forms of knowledge representation of the records and how your recovery should be convergent. It establishes general aim to examine the rules of AACR2R description of printed music and definition of access points to the needs of users of the Conservatory "Cacilda Becker, " on the recovery of piano scores. How to draw up specific goals: to identify elements in the musical scores for piano; understand how to identify aspects of recovering from the records of scores and, consequently, access points used in the process, understand the rules used for describing and defining points of access to printed music, and collating elements, forms of description and retrieval of music. To achieve these goals, the procedures are based on exploratory qualitative approach for the identification and collation of cataloging rules address the needs of users, using the questionnaire as a research tool. As a result, there is verification that the rules of AACR2R did not fully meet the needs of search and retrieval of such document. Suggestions are proposed to adapt these rules

    The Regulation of Plasmodium falciparum Metabolism by Haloacid Dehalogenase Proteins

    Get PDF
    Malaria is an enormous financial and public health burden for much of the world, infecting over 200 million and killing over 400,000 people every year. While much progress has been made combating malaria in the past few decades, those advances have slowed in recent years, partially due to the emergence of resistance to all known antimalarials used to date. To achieve the goal of eliminating malaria as a major global health problem, new therapeutics need to be developed, targeting novel categories of parasite biology. One poorly understood area of parasite biology is the regulation of various metabolic pathways. We have recently identified a superfamily of proteins, named haloacid dehalogenase (HAD) proteins, that are implicated in resistance to metabolic inhibitors and regulation of essential metabolic pathways in Plasmodium falciparum malaria parasites. Here, we investigate how HAD2 (PF3D7_1226300) regulates metabolism of the isoprenoid biosynthesis pathway, using biochemical, metabolomic, and genetic tools. We find that HAD2 is a phosphatase with a preference for triose phosphates. We then investigate the related HAD proteins—HAD4 (PF3D7_1118400), Lipin (PF3D7_0303200), and HAD5 (PF53D7_1017400)—for their roles in regulating parasite metabolism and the implications for future drug design. We find that HAD4 and Lipin are dispensable for growth in asexual malaria parasites. Lipin disruption causes significant growth reduction and accumulation of lipid species, while HAD4 is a dispensable nucleotide phosphatase. We also find that HAD5 is a phosphomannomutase that is essential for parasite egress and invasion. We solve the three-dimensional crystal structure of HAD5 and demonstrate our ability to selectively inhibit it compared to human phosphomannomutases. All of these findings add to our understanding of metabolic regulation in malaria parasites, illuminating key ways that targeting different metabolic pathways could work synergistically in development of novel antimalarial therapeutic strategies

    Recent Developments on the Role of Ethylene in the Ripening of Climacteric Fruit

    Get PDF
    It has long been recognised that ethylene plays a major role in the ripening process of climacteric fruit. A more thorough analysis, however, has revealed that a number of biochemical and molecular processes associated with climacteric fruit ripening are ethylene-independent. One of the crucial steps of the onset of ripening is the induction of autocatalytic ethylene production. In ethylene-suppressed melons, ACC synthase activity is induced at the same time as in control melons, indicating that ACC biosynthesis during the early stages of ripening seems to be a developmentally-regulated (ethylene-independent) process. The various ripening events exhibit differential sensitivity to ethylene. For instance, the threshold level for degreening of the rind is 1ppm, while 2.5 ppm are required to trigger some components of the softening process. The saturating level of ethylene producing maximum effects is less than 5 ppm, which is by far lower than the internal ethylene concentrations found in the fruit at the climacteric peak (over 100 ppm). In many fruit chilling temperatures hasten ethylene production and ripening and in some late season pear varieties, exposure to chilling temperatures is even absolutely required for the attainment of the capacity to synthesize autocatalytic ethylene. This is correlated with the stimulation of expression of ACC oxidase and of members of the ACC synthase gene family. Ethylene operates via a perception and transduction pathway to induce the expression of genes responsible for the biochemical and physiological changes observed during ripening. However, only a few genes induced via the ethylene transduction pathway have been described so far. We have used a differential display method to isolate novel ethylene-reponsive (ER) cDNA clones of tomato that potentially play a role in propagating the ethylene response and in regulating fruit ripening. Collectively, these data permit a general scheme of the molecular mechanisms of fruit ripening to be proposed

    Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments: A matter of relative size of studied transcriptomes

    Get PDF
    In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is known that the choice of a normalization procedure leads to a great variability in results of differential gene expression analysis. The present study compares the most widespread normalization procedures and proposes a novel one aiming at removing an inherent bias of studied transcriptomes related to their relative size. Comparisons of the normalization procedures are performed on real and simulated data sets. Real RNA-Seq data sets analyses, performed with all the different normalization methods, show that only 50% of significantly differentially expressed genes are common. This result highlights the influence of the normalization step on the differential expression analysis. Real and simulated data sets analyses give similar results showing 3 different groups of procedures having the same behavior. The group including the novel method named “Median Ratio Normalization” (MR N) gives the lower number of false discoveries. Within this group the MR N method is less sensitive to the modification of parameters related to the relative size of transcriptomes such as the number of down- and upregulated genes and the gene expression levels. The newly proposed MR N method efficiently deals with intrinsic bias resulting from relative size of studied transcriptomes. Validation with real and simulated data sets confirmed that MR N is more consistent and robust than existing methods

    AACR2r e necessidades de usuários: o papel da representação na recuperação de partituras

    Get PDF
    The aim is to study the care needs of the users of the Conservatory "Cacilda Becker, Pirassununga, SP rules for descriptive representation of documents in the established musical AACR2R. The study was conducted among piano teachers to identify their needs for search and recovery of piano scores in the local collection. This research is justified given that the forms of knowledge representation of the records and how your recovery should be convergent. It establishes general aim to examine the rules of AACR2R description of printed music and definition of access points to the needs of users of the Conservatory "Cacilda Becker, " on the recovery of piano scores. How to draw up specific goals: to identify elements in the musical scores for piano; understand how to identify aspects of recovering from the records of scores and, consequently, access points used in the process, understand the rules used for describing and defining points of access to printed music, and collating elements, forms of description and retrieval of music. To achieve these goals, the procedures are based on exploratory qualitative approach for the identification and collation of cataloging rules address the needs of users, using the questionnaire as a research tool. As a result, there is verification that the rules of AACR2R did not fully meet the needs of search and retrieval of such document. Suggestions are proposed to adapt these rules

    TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks

    Get PDF
    The TomExpress platform was developed to provide the tomato research community with a browser and integrated web tools for public RNA-Seq data visualization and data mining. To avoid major biases that can result from the use of different mapping and statistical processing methods, RNA-Seq raw sequence data available in public databases were mapped de novo on a unique tomato reference genome sequence and post-processed using the same pipeline with accurate parameters. Following the calculation of the number of counts per gene in each RNA-Seq sample, a communal global normalization method was applied to all expression values. This unifies the whole set of expression data and makes them comparable. A database was designed where each expression value is associated with corresponding experimental annotations. Sample details were manually curated to be easily understandable by biologists. To make the data easily searchable, a user-friendly web interface was developed that provides versatile data mining web tools via on-the-fly generation of output graphics, such as expression bar plots, comprehensive in planta representations and heatmaps of hierarchically clustered expression data. In addition, it allows for the identification of co-expressed genes and the visualization of correlation networks of co-regulated gene groups. TomExpress provides one of the most complete free resources of publicly available tomato RNA-Seq data, and allows for the immediate interrogation of transcriptional programs that regulate vegetative and reproductive development in tomato under diverse conditions. The design of the pipeline developed in this project enables easy updating of the database with newly published RNA-Seq data, thereby allowing for continuous enrichment of the resource

    Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling

    Get PDF
    Indole Acetic Acid 9 (IAA9) is a negative auxin response regulator belonging to the Aux/IAA transcription factor gene family whose downregulation triggers fruit set before pollination, thus giving rise to parthenocarpy. In situ hybridization experiments revealed that a tissue-specific gradient of IAA9 expression is established during flower development, the release of which upon pollination triggers the initiation of fruit development. Comparative transcriptome and targeted metabolome analysis uncovered important features of the molecular events underlying pollination-induced and pollination-independent fruit set. Comprehensive transcriptomic profiling identified a high number of genescommonto both types of fruit set,amongwhich only a small subset are dependent on IAA9 regulation. The fine-tuning of Aux/IAA and ARF genes and the downregulation of TAG1 and TAGL6 MADS box genes are instrumental in triggering the fruit set program. Auxin and ethylene emerged as the most active signaling hormones involved in the flower-to-fruit transition. However, while these hormones affected only a small number of transcriptional events, dramatic shifts were observed at the metabolic and developmental levels. The activation of photosynthesis and sucrose metabolism-related genes is an integral regulatory component of fruit set process. The combined results allow a far greater comprehension of the regulatory and metabolic events controlling early fruit development both in the presence and absence of pollination/fertilization

    Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato

    Get PDF
    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripeningassociated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening
    • …
    corecore