265 research outputs found

    MSMC and MSMC2: the multiple sequentially markovian coalescent

    Get PDF
    The Multiple Sequentially Markovian Coalescent (MSMC) is a population genetic method and software for inferring demographic history and population structure through time from genome sequences. Here we describe the main program MSMC and its successor MSMC2. We go through all the necessary steps of processing genomic data from BAM files all the way to generating plots of inferred population size and separation histories. Some background on the methodology itself is provided, as well as bash scripts and python source code to run the necessary programs. The reader is also referred to community resources such as a mailing list and github repositories for further advice

    30 days wild: development and evaluation of a large-scale nature engagement campaign to improve well-being

    Get PDF
    There is a need to increase people’s engagement with and connection to nature, both for human well-being and the conservation of nature itself. In order to suggest ways for people to engage with nature and create a wider social context to normalise nature engagement, The Wildlife Trusts developed a mass engagement campaign, 30 Days Wild. The campaign asked people to engage with nature every day for a month. 12,400 people signed up for 30 Days Wild via an online sign-up with an estimated 18,500 taking part overall, resulting in an estimated 300,000 engagements with nature by participants. Samples of those taking part were found to have sustained increases in happiness, health, connection to nature and pro-nature behaviours. With the improvement in health being predicted by the improvement in happiness, this relationship was mediated by the change in connection to nature

    Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Get PDF
    The early Earth was characterized by the absence of oxygen in the ocean–atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5–2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen

    ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation

    Get PDF
    Selective treatments for myocardial infarction (MI) induced cardiac fibrosis are lacking. In this study, we focus on the therapeutic potential of a synthetic cardio-protective agent named ZYZ-168 towards MI-induced cardiac fibrosis and try to reveal the underlying mechanism. ZYZ-168 was administered to rats with coronary artery ligation over a period of six weeks. Ecocardiography and Masson staining showed that ZYZ-168 substantially improved cardiac function and reduced interstitial fibrosis. The expression of α–smooth muscle actin (α-SMA) and Collagen I were reduced as was the activity of matrix metalloproteinase 9 (MMP-9). These were related with decreased phosphorylation of ERK1/2 and expression of Rho-associated coiled-coil containing protein kinase 1 (ROCK1). In cardiac fibroblasts stimulated with TGF-β1, phenotypic switches of cardiac fibroblasts to myofibroblasts were observed. Inhibition of ERK1/2 phosphorylation or knockdown of ROCK1 expectedly reduced TGF-β1 induced fibrotic responses. ZYZ-168 appeared to inhibit the fibrotic responses in a concentration dependent manner, in part via a decrease in ROCK 1 expression through inhibition of the phosphorylation status of ERK1/2. For inhibition of ERK1/2 phosphorylation with a specific inhibitor reduced the activation of ROCK1. Considering its anti-apoptosis activity in MI, ZYZ-168 may be a potential drug candidate for treatment of MI-induced cardiac fibrosis

    Multiplex Immunoassay of Lower Genital Tract Mucosal Fluid from Women Attending an Urban STD Clinic Shows Broadly Increased IL1ß and Lactoferrin

    Get PDF
    BACKGROUND: More than one million new cases of sexually transmitted diseases (STDs) occur each day. The immune responses and inflammation induced by STDs and other frequent non-STD microbial colonizations (i.e. Candida and bacterial vaginosis) can have serious pathologic consequences in women including adverse pregnancy outcomes, infertility and increased susceptibility to infection by other pathogens. Understanding the types of immune mediators that are elicited in the lower genital tract by these infections/colonizations can give important insights into the innate and adaptive immune pathways that are activated and lead to strategies for preventing pathologic effects. METHODOLOGY/PRINCIPAL FINDINGS: 32 immune mediators were measured by multiplexed immunoassays to assess the immune environment of the lower genital tract mucosa in 84 women attending an urban STD clinic. IL-3, IL-1ß, VEGF, angiogenin, IL-8, ß2Defensin and ß3Defensin were detected in all subjects, Interferon-α was detected in none, while the remaining mediators were detected in 40% to 93% of subjects. Angiogenin, VEGF, FGF, IL-9, IL-7, lymphotoxin-α and IL-3 had not been previously reported in genital mucosal fluid from women. Strong correlations were observed between levels of TNF-α, IL-1ß and IL-6, between chemokines IP-10 and MIG and between myeloperoxidase, IL-8 and G-CSF. Samples from women with any STD/colonization had significantly higher levels of IL-8, IL-3, IL-7, IL-1ß, lactoferrin and myeloperoxidase. IL-1ß and lactoferrin were significantly increased in gonorrhea, Chlamydia, cervicitis, bacterial vaginosis and trichomoniasis. CONCLUSIONS/SIGNIFICANCE: These studies show that mucosal fluid in general appears to be an environment that is rich in immune mediators. Importantly, IL-1ß and lactoferrin are biomarkers for STDs/colonizations providing insights into immune responses and pathogenesis at this mucosal site

    Reconnecting with nature for sustainability

    Get PDF
    Calls for humanity to ‘reconnect to nature’ have grown increasingly louder from both scholars and civil society. Yet, there is relatively little coherence about what reconnecting to nature means, why it should happen and how it can be achieved. We present a conceptual framework to organise existing literature and direct future research on human–nature connections. Five types of connections to nature are identified: material, experiential, cognitive, emotional, and philosophical. These various types have been presented as causes, consequences, or treatments of social and environmental problems. From this conceptual base, we discuss how reconnecting people with nature can function as a treatment for the global environmental crisis. Adopting a social–ecological systems perspective, we draw upon the emerging concept of ‘leverage points’—places in complex systems to intervene to generate change—and explore examples of how actions to reconnect people with nature can help transform society towards sustainability

    Design and Deploying Tools to ‘Actively Engaging Nature’: The My Naturewatch Project as an Agent for Engagement

    Get PDF
    ‘Shifting Baseline Syndrome’ is highly apparent in the context of generational shifts in work and life patterns that reduce interaction with and knowledge of the natural world, and therefore expectations of it. This is exacerbated by changes in the natural world itself due to climate change, biodiversity decline and a range of anthropogenic factors. Distributed and accessible technologies, and grass roots approaches provide fresh opportunities for interactions, which enable active engagement in ecological scenarios. The My NatureWatch project uses digital devices to collect visual content about UK wildlife, promoting ‘active engagements with nature’. The project embodies Inclusive Design in the Digital Age, as the activity; engages a wide demographic community, can be used by all, provided user led agency and produced methodological design lessons. The article frames My Naturewatch as an agent for active designed engagements with nature. The research objective is to comprehend ‘how to design tools for positive nature engagement’ holding value for; (1) academic communities as validated methodologies (2) the public through access to enabling technologies, content and knowledge (3) industry in the form of new; experiences, engagements and commerce. The approach is specifically designed to yield insights from a multitude of engagements, through the deployment of accessible, lowcost products. Project reporting documents the benefits, pitfalls and opportunities in the aforementioned engagement uncovered through design-led approaches. Insights are gathered from public/community facing workshops, wildlife experts, ecologists, economists, educators and wildlife NGO’s. The engagement methodologies are compared highlighting which initiative yielded ‘Active Engagement with Nature’

    Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor

    Get PDF
    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels

    The Role of Actin Turnover in Retrograde Actin Network Flow in Neuronal Growth Cones

    Get PDF
    The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network
    • …
    corecore