253 research outputs found

    Guided Tissue Remineralization of Resin-Bonded Acid-Etched Dentin

    Get PDF
    Contemporary biomineralization strategies incorporate non-classical crystallization pathways of fluidic amorphous nanoprecursors and mesoscopic transformation. Using two functional biomimetic molecules, we previously regenerated mineralized dentin from acid-etched dentin using the Guided Tissue Remineralization (GTR) approach, with definitive intrafibrillar remineralization of type-I collagen. Degradation of denuded collagen within dentin adhesive resin-infiltrated dentin is a pertinent problem in dentin bonding. Here, we show that GTR provides a means of salvaging these degrading bonds by remineralizing resin-dentin interfaces. The GTR medium consists of a Portland cement/simulated body fluid that includes polyacrylic acid and polyvinylphosphonic acid biomimetic analogs for amorphous calcium phosphate dimension regulation and collagen targeting. Both interfibrillar and intrafibrillar apatites became readily discernible within the adhesive-bonded dentin after 2-4 months. Amorphous nanoprecursors created by GTR also penetrated the adhesive resin matrix to create nanocomposites. We anticipate GTR to be the starting point for more sophisticated strategies in extending the longevity of resin-dentin bonds

    Capacidade de união de resinas adesivas à dentina afetada e infectada por cárie

    Get PDF
    Hybridized dentin permits dental treatments that were previously impossible with conventional techniques, opening new frontiers in modern adhesive dentistry. We have investigated the adhesive property of current bonding systems to caries-infected dentin by a microtensile bond strength test (µTBS) and transmission electron microscopy (TEM), and suggested that bonding resin could infiltrate into caries-infected dentin partially to embed carious bacteria within hybrid layers. We have named this concept of caries control as modified sealed restoration (MSR). On the other hand, Kuraray Medical Inc. (Tokyo, Japan) has developed an antibacterial adhesive system (ABF, now marketed in USA as Protect Bond). So as to evaluate the effectiveness of ABF on root caries control, we have examine the microtensile bond strengths (µTBS) of ABF to normal versus carious root dentin and the interfacial morphology by a scanning electron microscopy (SEM). ABF could form the hybrid-like structures by infiltrating into the surfaces of the root carious dentin, and the mean value of µTBS of ABF to root carious dentin was 23.0 MPa. These results suggested that MSR combined with ABF might be an advantageous minimal invasive therapy for root caries.As técnicas adesivas permitiram inovações nos tratamentos restauradores da atualidade. Este estudo investigou a qualidade de união de diferentes sistemas adesivos ao substrato dentinário afetado e infectado por cárie, através de testes de microtração e microscopia eletrônica de transmissão e varredura (MET). Os resultados sugerem que a resina adesiva pôde infiltrar na dentina infectada e envolver as bactérias na camada híbrida. Esse conceito de controle da cárie foi denominado de "Restauração-Selante Modificada" (RSM). Por outro lado, a empresa Kuraray Med. Inc .(Japão) desenvolveu um sistema adesivo com propriedades anti-bacterianas (ABF), o qual é comercializado nos EUA como Protect Bond. Para avaliar a efetividade do sistema ABF sobre cáries radiculares, empregou-se testes de resistência adesiva e análise por microscopia eletrônica. O sistema ABF foi capaz de formar uma estrutura interfacial semelhante à camada híbrida, através da infiltração na superfície da dentina cariada radicular e os valores de resistência de união foram em média de 23 MPa. Os achados sugerem que a combinação da técnica RSM com o sistema ABF parece ser uma alternativa para o emprego da terapia de mínima invasão em cáries radiculares

    Effects of tricalcium silicate cements on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro

    Get PDF
    Tricalcium silicate cements have been successfully employed in the biomedical field as bioactive bone and dentin substitutes, with widely acclaimed osteoactive properties. This research analyzed the effects of different tricalcium silicate cement formulations on the temporal osteoactivity profile of human bone marrow-derived mesenchymal stem cells (hMW-MSCs). These cells were exposed to four commercially available tricalcium silicate cement formulations in osteogenic differentiation medium. After 1, 3, 7 and 10 days, quantitative real-time polymerase chain reaction and Western blotting were performed to detect expression of the target osteogenic markers ALP, RUNX2, OSX, OPN, MSX2 and OCN. After 3, 7, 14 and 21 days, alkaline phosphatase assay was performed to detect changes in intracellular enzyme level. An Alizarin Red S assay was performed after 28 days to detect extracellular matrix mineralization. In the presence of tricalcium silicate cements, target osteogenic markers were downregulated at the mRNA and protein levels at all time points. Intracellular alkaline phosphatase enzyme levels and extracellular mineralization of the experimental groups were not significantly different from the untreated control. Quantitative polymerase chain reaction results showed increases in downregulation of RUNX2, OSX, MSX2 and OCN with increasing time of exposure to the tricalcium silicate cements, while ALP showed peak downregulation at day 7. For Western blotting, OSX, OPN, MSX2 and OCN showed increased downregulation with increased exposure time to the tested cements. Alkaline phosphatase enzyme levels generally declined after day 7. Based on these results, it is concluded that tricalcium silicate cements do not induce osteogenic differentiation of hBM-MSCs in vitro

    Enamel remineralization via poly(amido amine) and adhesive resin containing calcium phosphate nanoparticles

    Get PDF
    Objectives:The objective of this study was to investigate enamel remineralization using salivary statherin pro-tein-inspired poly(amidoamine) dendrimer (SN15-PAMAM) and adhesive containing nanoparticles of amor-phous calcium phosphate (NACP) in a cyclic artificial saliva/demineralizing solution for thefirst time.Methods:The enamel shear bond strengths of NACP adhesives were measured compared to commercial adhesive(Scotchbond Multi-Purpose, 3 M). Adhesive disks containing NACP were tested for calcium (Ca) and phosphorus(P) ions release. Four groups were tested: (1) enamel control, (2) enamel with NACP, (3) enamel with SN15-PAMAM, and (4) enamel with SN15-PAMAM + NACP. The specimens were treated with cyclic artificial saliva/demineralizing solution for 28 days. The remineralized enamel specimens were examined by surface and cross-sectional hardness test.Results:NACP adhesive yielded a similar shear bond strength to commercial control (Scotchbond Multi-Purpose,3 M). NACP adhesive released high levels of Ca and P ions. At 28 days, the enamel hardness of SN15-PAMAM +NACP group was 2.89 ± 0.13 GPa, significantly higher than that of control group (1.46 ± 0.10 GPa) (p< 0.05).SN15-PAMAM + NACP increased the enamel cross-sectional hardness at 28 days; at 25μm, enamel cross-sectional hardness was 90 % higher than that of control group (p< 0.05).Significance:The novel SN15-PAMAM + NACP adhesive method could achieve 90 % higher enamel reminer-alization of the artificial caries than the control under acid challenge for thefirst time. This method is promisingfor use after tooth cavity preparation, or as a coating on enamel with white spot lesions (WSLs) for prevention, toreduce secondary caries, prevent caries procession and protect tooth structures

    Quaternary Ammonium Silane-Functionalized, Methacrylate Resin Composition With Antimicrobial Activities and Self-Repair Potential

    Get PDF
    The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol–gel chemical route; these compounds possess flexible Si–O–Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix

    Biochemical and immunohistochemical identification of MMP-7 in human dentin

    Get PDF
    Objectives: Matrix metalloproteinases (MMPs) are dentinal endogenous enzymes claimed to have a vital role in dentin organic matrix breakdown. The aim of the study was to investigate presence, localization and distribution of MMP-7 in sound human dentin. Methods: Dentin was powdered, demineralized and dissolved in isoelectric focusing buffer. Resolved proteins were transferred to nitrocellulose membranes for western blotting (WB) analyses. For the zymographic analysis, aliquots of dentin protein were electrophoresed in 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing fluorescently labeled gelatin. Further, the concentrations of dentinal MMPs were measured using Fluorescent Microsphere Immunoassay with a human MMP-MAP multiplex kit. Pre- and post-embedding immunolabeling technique was used to investigate the localization and distribution of MMP-7 in dentin. Dentin was cryo-fractured, the fragments partially decalcified and labeled with a primary monoclonal anti-MMP-7 and a secondary antibody conjugated with gold nanoparticles. MMP-7 labelings were identified in the demineralized dentin matrix as highly electron-dense dispersed gold particles. Results: WB and zymographic analysis of extracted dentin proteins showed presence of MMP-7 (similar to 20-28 KDa). Further, MMP-7 was found in the supernatants of the incubated dentin beams using Fluorescent Microsphere Immunoassay. FEI-SEM and TEM analyses established MMP-7 as an intrinsic constituent of the human dentin organic matrix. Conclusion: This study demonstrated that MMP-7 is an endogenous component of the human dentin fibrillar network. Clinical significance: It is pivotal to understand the underlying processes behind dentin matrix remodeling and degradation in order to develop the most optimal clinical protocols and ensure the longevity of dental restorations.Peer reviewe

    People Interpret Robotic Non-linguistic Utterances Categorically

    Get PDF
    We present results of an experiment probing whether adults exhibit categorical perception when affectively rating robot-like sounds (Non-linguistic Utterances). The experimental design followed the traditional methodology from the psychology domain for measuring categorical perception: stimulus continua for robot sounds were presented to subjects, who were asked to complete a discrimination and an identification task. In the former subjects were asked to rate whether stimulus pairs were affectively different, while in the latter they were asked to rate single stimuli affectively. The experiment confirms that Non-linguistic Utterances can convey affect and that they are drawn towards prototypical emotions, confirming that people show categorical perception at a level of inferred affective meaning when hearing robot-like sounds. We speculate on how these insights can be used to automatically design and generate affect-laden robot-like utterances
    corecore