469 research outputs found

    Investigation of the high momentum component of nuclear wave function using hard quasielastic A(p,2p)X reactions

    Get PDF
    We present theoretical analysis of the first data on the high energy and momentum transfer (hard) quasielastic C(p,2p)XC(p,2p)X reactions. The cross section of hard A(p,2p)XA(p,2p)X reaction is calculated within the light-cone impulse approximation based on two-nucleon correlation model for the high-momentum component of the nuclear wave function. The nuclear effects due to modification of the bound nucleon structure, soft nucleon-nucleon reinteraction in the initial and final states of the reaction with and without color coherence have been considered. The calculations including these nuclear effects show that the distribution of the bound proton light-cone momentum fraction (α)(\alpha) shifts towards small values (α<1\alpha < 1), effect which was previously derived only within plane wave impulse approximation. This shift is very sensitive to the strength of the short range correlations in nuclei. Also calculated is an excess of the total longitudinal momentum of outgoing protons. The calculations are compared with data on the C(p,2p)XC(p,2p)X reaction obtained from the EVA/AGS experiment at Brookhaven National Laboratory. These data show α\alpha-shift in agreement with the calculations. The comparison allows also to single out the contribution from short-range nucleon correlations. The obtained strength of the correlations is in agreement with the values previously obtained from electroproduction reactions on nuclei.Comment: 30 pages LaTex file and 19 eps figure

    Coherent QCD phenomena in the Coherent Pion-Nucleon and Pion-Nucleus Production of Two Jets at High Relative Momenta

    Full text link
    We use QCD to compute the cross section for coherent production of a di-jet (treated as a qqˉq\bar q moving at high relative transverse momentum,κt\kappa_t ). In the target rest frame,the space-time evolution of this reaction is dominated by the process in which the high κt\kappa_t qqˉq\bar q component of the pion wave function is formed before reaching the target. It then interacts through two gluon exchange. In the approximation of keeping the leading order in powers of αs\alpha_s and all orders in αsln(κt2/k02),\alpha_{s}\ln(\kappa_{t}^2/k_{0}^2), the amplitudes for other processes are shown to be smaller at least by a power of αs\alpha_{s}. The resulting dominant amplitude is proportional to z(1z)κt4z(1-z) \kappa_t^{-4} (zz is the fraction light-cone(+)momentum carried by the quark in the final state) times the skewed gluon distribution of the target. For the pion scattering by a nuclear target, this means that at fixed xN=2κt2/sx_{N}= 2\kappa_{t}^2/s (but κt2\kappa_{t}^2\to \infty) the nuclear process in which there is only a single interaction is the most important one to contribute to the reaction. Thus in this limit color transparency phenomena should occur.These findings are in accord with E971 experiment at FNAL. We also re-examine a potentially important nuclear multiple scattering correction which is positive and A1/3/κt4\propto A^{1/3}/\kappa_t^4. The meaning of the signal obtained from the experimental measurement of pion diffraction into two jets is also critically examined and significant corrections are identified.We show also that for values of κt\kappa_t achieved at fixed target energies, di-jet production by the e.m. field of the nucleus leads to an insignificant correction which gets more important as κt\kappa_t increases.Comment: 23 pages, 9 figure

    Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x

    Get PDF
    A detailed study of inclusive deep inelastic scattering (DIS) from mirror A = 3 nuclei at large values of the Bjorken variable x is presented. The main purpose is to estimate the theoretical uncertainties on the extraction of the neutron DIS structure function from such nuclear measurements. On one hand, within models in which no modification of the bound nucleon structure functions is taken into account, we have investigated the possible uncertainties arising from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii) finite Q**2 effects neglected in the Bjorken limit, iii) the role of different prescriptions for the nucleon Spectral Function normalization providing baryon number conservation, and iv) the differences between the virtual nucleon and light cone formalisms. Although these effects have been not yet considered in existing analyses, our conclusion is that all these effects cancel at the level of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other hand we have considered several models in which the modification of the bound nucleon structure functions is accounted for to describe the EMC effect in DIS scattering from nuclei. It turns out that within these models the cancellation of nuclear effects is expected to occur only at a level of ~ 3%, leading to an accuracy of ~ 12 % in the extraction of the neutron to proton structure function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad range of models of the EMC effect is that the previously suggested iteration procedure does not improve the accuracy of the extraction of the neutron to proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in Section 4; no change in the conclusion

    Q2Q^2 Independence of QF2/F1QF_2/F_1, Poincare Invariance and the Non-Conservation of Helicity

    Get PDF
    A relativistic constituent quark model is found to reproduce the recent data regarding the ratio of proton form factors, F2(Q2)/F1(Q2)F_2(Q^2)/F_1(Q^2). We show that imposing Poincare invariance leads to substantial violation of the helicity conservation rule, as well as an analytic result that the ratio F2(Q2)/F1(Q2)1/QF_2(Q^2)/F_1(Q^2)\sim 1/Q for intermediate values of Q2Q^2.Comment: 13 pages, 7 figures, to be submitted to Phys. Rev. C typos corrected, references added, 1 new figure to show very high Q^2 behavio

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Measurements of long-range near-side angular correlations in sNN=5\sqrt{s_{\text{NN}}}=5TeV proton-lead collisions in the forward region

    Get PDF
    Two-particle angular correlations are studied in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of sNN=5\sqrt{s_{\text{NN}}}=5TeV, collected with the LHCb detector at the LHC. The analysis is based on data recorded in two beam configurations, in which either the direction of the proton or that of the lead ion is analysed. The correlations are measured in the laboratory system as a function of relative pseudorapidity, Δη\Delta\eta, and relative azimuthal angle, Δϕ\Delta\phi, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side, Δϕ0\Delta\phi \approx 0, is observed in the pseudorapidity range 2.0<η<4.92.0<\eta<4.9. This measurement of long-range correlations on the near side in proton-lead collisions extends previous observations into the forward region up to η=4.9\eta=4.9. The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. However, the correlation in the direction of the lead and proton beams are found to be compatible when comparing events with similar absolute activity in the direction analysed.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm

    Study of the production of Λb0\Lambda_b^0 and B0\overline{B}^0 hadrons in pppp collisions and first measurement of the Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^- branching fraction

    Get PDF
    The product of the Λb0\Lambda_b^0 (B0\overline{B}^0) differential production cross-section and the branching fraction of the decay Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^- (B0J/ψK(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0) is measured as a function of the beauty hadron transverse momentum, pTp_{\rm T}, and rapidity, yy. The kinematic region of the measurements is pT<20 GeV/cp_{\rm T}<20~{\rm GeV}/c and 2.0<y<4.52.0<y<4.5. The measurements use a data sample corresponding to an integrated luminosity of 3 fb13~{\rm fb}^{-1} collected by the LHCb detector in pppp collisions at centre-of-mass energies s=7 TeV\sqrt{s}=7~{\rm TeV} in 2011 and s=8 TeV\sqrt{s}=8~{\rm TeV} in 2012. Based on previous LHCb results of the fragmentation fraction ratio, fΛB0/fdf_{\Lambda_B^0}/f_d, the branching fraction of the decay Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^- is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay B0J/ψK(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0, and the fourth is due to the knowledge of fΛb0/fdf_{\Lambda_b^0}/f_d. The sum of the asymmetries in the production and decay between Λb0\Lambda_b^0 and Λb0\overline{\Lambda}_b^0 is also measured as a function of pTp_{\rm T} and yy. The previously published branching fraction of Λb0J/ψpπ\Lambda_b^0\rightarrow J/\psi p\pi^-, relative to that of Λb0J/ψpK\Lambda_b^0\rightarrow J/\psi pK^-, is updated. The branching fractions of Λb0Pc+(J/ψp)K\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^- are determined.Comment: 29 pages, 19figures. All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
    corecore