60 research outputs found

    PLZT microfibers technology optimization

    Get PDF
    Electrocaloric (EC) structures for a new generation of cooling or heating elements utilize the temperature dependence of spontaneous polarization in some ferroelectric materials to convert waste heat into electricity and vice versa. A (Pb0.93La0.07) (Zr0.65Ti0.35)O3 material, have the largest recorded pyroelectric coefficient. An effective predicted form for such applications is fiber, due to small heat capacitance and quick response time, even for nano second laser excitation. Consequently, the presented work provides a description of the optimization of structural, ferroelectric and piezoelectric properties of obtained fibers, finally concluding on necessity of sintering temperature reduction in 100°C in contrast to bulk form to effectively prevent its destruction

    High-Confidence Placement of Fragments into Electron Density Using Anomalous Diffraction—A Case Study Using Hits Targeting SARS-CoV-2 Non-Structural Protein 1

    Get PDF
    The identification of multiple simultaneous orientations of small molecule inhibitors binding to a protein target is a common challenge. It has recently been reported that the conformational heterogeneity of ligands is widely underreported in the Protein Data Bank, which is likely to impede optimal exploitation to improve affinity of these ligands. Significantly less is even known about multiple binding orientations for fragments (<300 Da), although this information would be essential for subsequent fragment optimisation using growing, linking or merging and rational structure-based design. Here, we use recently reported fragment hits for the SARS-CoV-2 non-structural protein 1 (nsp1) N-terminal domain to propose a general procedure for unambiguously identifying binding orientations of 2-dimensional fragments containing either sulphur or chloro substituents within the wavelength range of most tunable beamlines. By measuring datasets at two energies, using a tunable beamline operating in vacuum and optimised for data collection at very low X-ray energies, we show that the anomalous signal can be used to identify multiple orientations in small fragments containing sulphur and/or chloro substituents or to verify recently reported conformations. Although in this specific case we identified the positions of sulphur and chlorine in fragments bound to their protein target, we are confident that this work can be further expanded to additional atoms or ions which often occur in fragments. Finally, our improvements in the understanding of binding orientations will also serve to improve the rational optimisation of SARS-CoV-2 nsp1 fragment hit

    Crystal structures and molecular dynamics simulations of a humanised antibody fragment at acidic to basic pH

    Get PDF
    Antibody-fragment (Fab) therapy development has the potential to be accelerated by computational modelling and simulations that predict their target binding, stability, formulation, manufacturability, and the impact of further protein engineering. Such approaches are currently predicated on starting with good crystal structures that closely represent those found under the solution conditions to be simulated. A33 Fab, is an undeveloped immunotherapeutic antibody candidate that was targeted to the human A33 antigen homogeneously expressed in 95% cases of primary and metastatic colorectal cancers. It is now used as a very well characterised testing ground for developing analytics, formulation and protein engineering strategies, and to gain a deeper understanding of mechanisms of destabilisation, representative of the wider therapeutic Fab platform. In this article, we report the structure of A33 Fab in two different crystal forms obtained at acidic and basic pH. The structures overlapped with RMSD of 1.33 Å overall, yet only 0.5 Å and 0.76 Å for the variable- and constant regions alone. While most of the differences were within experimental error, the switch linker between the variable and the constant regions showed some small differences between the two pHs. The two structures then enabled a direct evaluation of the impact of initial crystal structure selection on the outcomes of molecular dynamics simulations under different conditions, and their subsequent use for determining best fit solution structures using previously obtained small-angle x-ray scattering (SAXS) data. The differences in the two structures did not have a major impact on MD simulations regardless of the pH, other than a slight persistence of structure affecting the solvent accessibility of one of the predicted APR regions of A33 Fab. Interestingly, despite being obtained at pH 4 and pH 9, the two crystal structures were more similar to the SAXS solution structures obtained at pH 7, than to those at pH 4 or pH 9. Furthermore, the P65 crystal structure from pH 4 was also a better representation of the solution structures at any other pH, than was the P1 structure obtained at pH 9. Thus, while obtained at different pH, the two crystal structures may represent highly (P65) and lesser (P1) populated species that both exist at pH 7 in solution. These results now lay the foundation for confident MD simulations of A33 Fab that rationalise or predict behaviours in a range of conditions

    Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering

    Get PDF
    The β-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution

    Revealing druggable cryptic pockets in the Nsp1 of SARS-CoV-2 and other β-coronaviruses by simulations and crystallography

    Get PDF
    Non-structural protein 1 (Nsp1) is a main pathogenicity factor of α- and β-coronaviruses. Nsp1 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suppresses the host gene expression by sterically blocking 40S host ribosomal subunits and promoting host mRNA degradation. This mechanism leads to the downregulation of the translation-mediated innate immune response in host cells, ultimately mediating the observed immune evasion capabilities of SARS-CoV-2. Here, by combining extensive molecular dynamics simulations, fragment screening and crystallography, we reveal druggable pockets in Nsp1. Structural and computational solvent mapping analyses indicate the partial crypticity of these newly discovered and druggable binding sites. The results of fragment-based screening via X-ray crystallography confirm the druggability of the major pocket of Nsp1. Finally, we show how the targeting of this pocket could disrupt the Nsp1-mRNA complex and open a novel avenue to design new inhibitors for other Nsp1s present in homologous β-coronaviruses

    Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures

    Get PDF
    Piezoelectric composites with 3-3 connectivity gathered attraction due to their potential application as an acoustic transducer in medical imaging, non-destructive testing, etc. In this contribution, piezoelectric composites were fabricated with a material extrusion-based additive manufacturing process (MEX), also well-known under the names fused deposition modeling (FDM), fused filament fabrication (FFF) or fused deposition ceramics (FDC). Thermoplastic filaments were used to achieve open and offset printed piezoelectric scaffold structures. Both scaffold structures were printed, debinded and sintered successfully using commercial PZT and BaTiO3 powder. For the first time, it could be demonstrated, that using the MEX processing method, closed pore ferroelectric structure can be achieved without pore-former additive. After ceramic processing, the PZT scaffold structures were impregnated with epoxy resin to convert them into composites with 3-3 connectivity. A series of composites with varying ceramic content were achieved by changing the infill parameter during the 3D printing process systematically, and their electromechanical properties were investigated using the electromechanical aix PES device. Also, the Figure of merit (FOM) of these composites was calculated to assess the potential of this material as a candidate for transducer applications. A maximum for the FOM at 25 vol.% of PZT could be observed in this stud

    Phenyl Bis-Sulfonamide Keap1-Nrf2 Protein–Protein Interaction Inhibitors with an Alternative Binding Mode

    Get PDF
    Inhibitors of Kelch-like ECH-associated protein 1 (Keap1) increase the activity of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by stalling its ubiquitination and degradation. This enhances the expression of genes encoding proteins involved in drug detoxification, redox homeostasis, and mitochondrial function. Nrf2 activation offers a potential therapeutic approach for conditions including Alzheimer’s and Parkinson’s diseases, vascular inflammation, and chronic obstructive airway disease. Non-electrophilic Keap1-Nrf2 protein–protein interaction (PPI) inhibitors may have improved toxicity profiles and different pharmacological properties to cysteine-reactive electrophilic inhibitors. Here, we describe and characterize a series of phenyl bis-sulfonamide PPI inhibitors that bind to Keap1 at submicromolar concentrations. Structural studies reveal that the compounds bind to Keap1 in a distinct “peptidomimetic” conformation that resembles the Keap1-Nrf2 ETGE peptide complex. This is different to other small molecule Keap1-Nrf2 PPI inhibitors, including bicyclic aryl bis-sulfonamides, offering a starting point for new design approaches to Keap1 inhibitors

    Phenyl Bis-Sulfonamide Keap1-Nrf2 Protein-Protein Interaction Inhibitors with an Alternative Binding Mode

    Get PDF
    [Image: see text] Inhibitors of Kelch-like ECH-associated protein 1 (Keap1) increase the activity of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by stalling its ubiquitination and degradation. This enhances the expression of genes encoding proteins involved in drug detoxification, redox homeostasis, and mitochondrial function. Nrf2 activation offers a potential therapeutic approach for conditions including Alzheimer’s and Parkinson’s diseases, vascular inflammation, and chronic obstructive airway disease. Non-electrophilic Keap1-Nrf2 protein–protein interaction (PPI) inhibitors may have improved toxicity profiles and different pharmacological properties to cysteine-reactive electrophilic inhibitors. Here, we describe and characterize a series of phenyl bis-sulfonamide PPI inhibitors that bind to Keap1 at submicromolar concentrations. Structural studies reveal that the compounds bind to Keap1 in a distinct “peptidomimetic” conformation that resembles the Keap1-Nrf2 ETGE peptide complex. This is different to other small molecule Keap1-Nrf2 PPI inhibitors, including bicyclic aryl bis-sulfonamides, offering a starting point for new design approaches to Keap1 inhibitors

    The use of synchrotron edge topography to study polytype nearest neighbour relationships in SiC

    Get PDF
    A brief review of the phenomenon of polytypism is presented and its prolific abundance in Silicon Carbide discussed. An attempt has been made to emphasise modern developments in understanding this unique behaviour. The properties of Synchrotron Radiation are shown to be ideally suited to studies of polytypes in various materials and in particular the coalescence of polytypes in SiC. It is shown that with complex multipolytypic crystals the technique of edge topography allows the spatial extent of disorder to be determined and, from the superposition of Laue type reflections, neighbourhood relationships between polytypes can be deduced. Finer features have now been observed with the advent of second generation synchrotrons, the resolution available enabling the regions between adjoining polytypes to be examined more closely. It is shown that Long Period Polytypes and One Dimensionally Disordered layers often found in association with regions of high defect density are common features at polytype boundaries. An idealised configuration termed a "polytype sandwich" is presented as a model for the structure of SiC grown by the modified Lely technique. The frequency of common sandwich edge profiles are classified and some general trends of polytype neighbourism are summarised
    corecore