5,456 research outputs found
Probing Multiple Sight Lines through the SN 1006 Remnant by Ultraviolet Absorption Spectroscopy
Absorption-line spectroscopy is an effective probe for cold ejecta within a supernova remnant (SNR), provided that suitable background UV sources can be identified. For the SN 1006 remnant we have identified four such sources, in addition to the much-studied Schweitzer-Middleditch (SM) star. We have used STIS on the Hubble Space Telescope to obtain UV spectra of all four sources, to study core samples of the SN 1006 interior. The line of sight closest to the center of the SNR shell, passing only 20 away, is to a V = 19.5 QSO at z = 1.026. Its spectrum shows broad Fe II absorption lines, asymmetric with red wings broader than blue. The similarity of these profiles to those seen in the SM star, which is 28 from the center in the opposite direction, confirms the existence of a bulge on the far side of SN 1006. The Fe II equivalent widths in the QSO spectrum are ~50% greater than in the SM star, suggesting that somewhat more iron may be present within SN 1006 than studies of the SM star alone have indicated, but this is still far short of what most Type Ia supernova models require. The absorption spectrum against a brighter z = 0.337 QSO seen at 57% of the shell radius shows broad silicon absorption lines but no iron other than narrow, probably interstellar lines. The cold iron expanding in this direction must be confined within v 5200 km s-1, also consistent with a high-velocity bulge on the far side only. The broad silicon lines indicate that the silicon layer has expanded beyond this point, and that it has probably been heated by a reverse shock—conclusions consistent with the clumpy X-ray structure and anomalous abundances observed from Chandra in this region. Finally, the spectra of two ~A0 V stars near the southern shell rim show no broad or unusually strong absorption lines, suggesting that the low-ionization ejecta are confined within 83% of the shell radius, at least at the azimuths of these background sources
The Response of Dispersion-Strengthened Copper Alloys to High Fluence Neutron Irradiation at 415⁰C
Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415°C in the Fast Flux Test Facility (FFTF). The Al2O3-strengthened GlidCop™ alloys, followed closely by a HfO2-strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO2-strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content resulted in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr2O3 -strengthened alloys showed poor resistance to radiations
Worker heterogeneity, new monopsony, and training
A worker's output depends not only on his/her own ability but also on that of colleagues, who can facilitate the performance of tasks that each individual cannot accomplish on his/her own. We show that this common-sense observation generates monopsony power and is sufficient to explain why employers might expend resources on training employees even when the training is of use to other firms. We show that training will take place in better-than-average or ‘good’ firms enjoying greater monopsony power, whereas ‘bad’ firms will have low-ability workers unlikely to receive much training
IBM-1 description of the fission products Ru
IBM-1} calculations for the fission products Ru have been
carried out. The even-even isotopes of Ru can be described as transitional
nuclei situated between the U(5) (spherical vibrator) and SO(6)
(-unstable rotor) symmetries of the Interacting Boson Model. At first,
a Hamiltonian with only one- and two-body terms has been used. Excitation
energies and (E2) ratios of gamma transitions have been calculated. A
satisfactory agreement has been obtained, with the exception of the odd-even
staggering in the quasi- bands of Ru. The observed pattern
is rather similar to the one for a rigid triaxial rotor. A calculation based on
a Hamiltonian with three-body terms was able to remove this discrepancy. The
relation between the IBM and the triaxial rotor model was also examined.Comment: 22 pages, 8 figure
Species-diagnostic microsatellite loci for the fig wasp genus Pegoscapus
To obtain tools for the estimation of inbreeding and assignment of offspring to matrilines, we developed 13 microsatellite loci from the fig wasps that pollinate Ficus obtusifolia. Based on morphological studies, it was thought that a single species (Pegoscapus hoffmeyer) pollinated this fig. However, our data revealed the presence of two coexisting cryptic species. Several diagnostic microsatellite markers may be used to distinguish these two cryptic species. The new microsatellites can be used across a wide range of fig-pollinating wasp species for both evolutionary and population genetic studies
Specifying computer-supported collaboration scripts
Collaboration scripts are activity programs which aim to foster collaborative learning by structuring interaction between learners. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform and learning context. A standardization of collaboration scripts first requires a specification of collaboration scripts that integrates multiple perspectives from computer science, education and psychology. So far, only few and limited attempts at such specifications have been made. This paper aims to consolidate and expand these approaches in light of recent findings and to propose a generic framework for the specification of collaboration scripts. The framework enables a description of collaboration scripts using a small number of components (participants, activities, roles, resources and groups) and mechanisms (task distribution, group formation and sequencing)
Time Evolution of the Reverse Shock in SN 1006
The Schweizer-Middleditch star, located behind the SN 1006 remnant and near
its center in projection, provides the opportunity to study cold, expanding
ejecta within the SN 1006 shell through UV absorption. Especially notable is an
extremely sharp red edge to the Si II 1260 Angstrom feature, which stems from
the fastest moving ejecta on the far side of the SN 1006 shell--material that
is just encountering the reverse shock. Comparing HST far-UV spectra obtained
with COS in 2010 and with STIS in 1999, we have measured the change in this
feature over the intervening 10.5-year baseline. We find that the sharp red
edge of the Si II feature has shifted blueward by 0.19 +/- 0.05 Angstroms,
which means that the material hitting the reverse shock in 2010 was moving
slower by 44 +/- 11 km/s than the material that was hitting it in 1999, a
change corresponding to - 4.2 +/- 1.0 km/s/yr. This is the first observational
confirmation of a long-predicted dynamic effect for a reverse shock: that the
shock will work its way inward through expanding supernova ejecta and encounter
ever slower material as it proceeds. We also find that the column density of
shocked Si II (material that has passed through the reverse shock) has
decreased by 7 +/- 2% over the ten-year period. The decrease could indicate
that in this direction the reverse shock has been ploughing through a dense
clump of Si,leading to pressure and density transients.Comment: 8 pages, includes 5 figure
Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2
Rationale: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodelling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A (PKA) signalling appears to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signalling microdomains.
Objective: How individual cAMP microdomains impact on cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth.
Methods and Results: Using pharmacological and genetic manipulation of PDE activity we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy whereas increasing cAMP levels via PDE2 inhibition is anti-hypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of PKA isoforms we demonstrate that the anti-hypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a PKA type II subset leading to phosphorylation of the nuclear factor of activated T cells (NFAT).
Conclusions: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo and its inhibition may have therapeutic applications
How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces
We study how single-crystal chromium films of uniform thickness on W(110)
substrates are converted to arrays of three-dimensional (3D) Cr islands during
annealing. We use low-energy electron microscopy (LEEM) to directly observe a
kinetic pathway that produces trenches that expose the wetting layer. Adjacent
film steps move simultaneously uphill and downhill relative to the staircase of
atomic steps on the substrate. This step motion thickens the film regions where
steps advance. Where film steps retract, the film thins, eventually exposing
the stable wetting layer. Since our analysis shows that thick Cr films have a
lattice constant close to bulk Cr, we propose that surface and interface stress
provide a possible driving force for the observed morphological instability.
Atomistic simulations and analytic elastic models show that surface and
interface stress can cause a dependence of film energy on thickness that leads
to an instability to simultaneous thinning and thickening. We observe that
de-wetting is also initiated at bunches of substrate steps in two other
systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are
converted into patterns of unidirectional stripes as the trenches that expose
the wetting layer lengthen along the W[001] direction. Finally, we observe how
3D Cr islands form directly during film growth at elevated temperature. The Cr
mesas (wedges) form as Cr film steps advance down the staircase of substrate
steps, another example of the critical role that substrate steps play in 3D
island formation
Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an analytic-numerical approach
Five types of blow-up patterns that can occur for the 4th-order semilinear
parabolic equation of reaction-diffusion type
u_t= -\Delta^2 u + |u|^{p-1} u \quad {in} \quad \ren \times (0,T), p>1,
\quad \lim_{t \to T^-}\sup_{x \in \ren} |u(x,t)|= +\iy, are discussed. For
the semilinear heat equation , various blow-up patterns
were under scrutiny since 1980s, while the case of higher-order diffusion was
studied much less, regardless a wide range of its application.Comment: 41 pages, 27 figure
- …