2,888 research outputs found

    Abrasion resistance of selected commercially available polymer materials

    Get PDF
    The aim of this investigation was to examine several types of commercially available polymers for potential application in machine elements that are exposed to abrasion. Selected materials were evaluated on a rubber and steel wheel abrasion test rig according to the standard ASTM G65, using as abrasive quartz sand (SiO2) as abrasive, with a particle grain size in the range of 0.8 – 1.6 mm. Tests were performed under dry conditions and at room temperature. Applied load was 50 N, within testing times of 1½, 3, 4½, and 6 hours respectively. Results of testing revealed influence on wear behavior of polymer hardness as well as influence of abrasive particle embedment

    The BaBar Event Building and Level-3 Trigger Farm Upgrade

    Full text link
    The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOGT00

    Amperometric separation-free immunosensor for real-time environmental monitoring

    Get PDF
    Immunoanalytical techniques have found widespread use due to the characteristics of specificity and wide applicability for many analytes, from large polymer antigens, to simple haptens, and even single atoms. Electrochemical sensors offer benefits of technical simplicity, speed and convenience via direct transduction to electronic equipment. Together, these two systems offer the possibility of a convenient, ubiquitous assay technique with high selectivity. However, they are still not widely used, mainly due to the complexity of the associated immunoassay methodologies. A separation-free immunoanalytical technique is described here, which has allowed for the analysis of atrazine in real time and in both quasi-equilibrium and stirred batch configurations. It illustrated that determinations as low as 0.13mM (28 ppb) could be made using equilibrium incubation with an analytical range of 0.1–10mM. Measurements could be made between 1 and 10 mM within several minutes using a real-time, stirred batch method. This system offers the potential for fast, simple, cost-effective biosensors for the analysis of many substances of environmental, biomedical and pharmaceutical concern

    Efficient Online Timed Pattern Matching by Automata-Based Skipping

    Full text link
    The timed pattern matching problem is an actively studied topic because of its relevance in monitoring of real-time systems. There one is given a log ww and a specification A\mathcal{A} (given by a timed word and a timed automaton in this paper), and one wishes to return the set of intervals for which the log ww, when restricted to the interval, satisfies the specification A\mathcal{A}. In our previous work we presented an efficient timed pattern matching algorithm: it adopts a skipping mechanism inspired by the classic Boyer--Moore (BM) string matching algorithm. In this work we tackle the problem of online timed pattern matching, towards embedded applications where it is vital to process a vast amount of incoming data in a timely manner. Specifically, we start with the Franek-Jennings-Smyth (FJS) string matching algorithm---a recent variant of the BM algorithm---and extend it to timed pattern matching. Our experiments indicate the efficiency of our FJS-type algorithm in online and offline timed pattern matching

    Generalised median of a set of correspondences based on the hamming distance.

    Get PDF
    A correspondence is a set of mappings that establishes a relation between the elements of two data structures (i.e. sets of points, strings, trees or graphs). If we consider several correspondences between the same two structures, one option to define a representative of them is through the generalised median correspondence. In general, the computation of the generalised median is an NP-complete task. In this paper, we present two methods to calculate the generalised median correspondence of multiple correspondences. The first one obtains the optimal solution in cubic time, but it is restricted to the Hamming distance. The second one obtains a sub-optimal solution through an iterative approach, but does not have any restrictions with respect to the used distance. We compare both proposals in terms of the distance to the true generalised median and runtime

    The LHCb experiment control system : on the path to full automation

    No full text
    http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mobaust06.pdfInternational audienceThe experiment control system is in charge of the configuration, control and monitoring of the different subdetectors and of all areas of the online system. The building blocks of the control system are based on the PVSS SCADA System complemented by a control Framework developed in common for the 4 LHC experiments. This framework includes an "expert system" like tool called SMI++ which is used for the system automation. The experiment's operations are now almost completely automated, driven by a top-level object called Big-Brother, which pilots all the experiment's standard procedures and the most common error-recovery procedures. The architecture, tools and mechanisms used for the implementation as well as some operational examples will be described

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    A multicenter prospective randomized controlled trial investigating the effects of combustion-free nicotine alternatives on cardiovascular risk factors and metabolic parameters in individuals with type 2 diabetes who smoke: the DiaSmokeFree study protocol

    Get PDF
    Stopping smoking is crucial for public health and especially for individuals with diabetes. Combustion-free nicotine alternatives like e-cigarettes and heated tobacco products are increasingly being used as substitutes for conventional cigarettes, contributing to the decline in smoking prevalence. However, there is limited information about the long-term health impact of those products in patients with diabetes. This randomized controlled trial aims to investigate whether switching from conventional cigarettes to combustion-free nicotine alternatives will lead to a measurable improvement in cardiovascular risk factors and metabolic parameters over a period of 2 years in smokers with type 2 diabetes. The multicenter study will be conducted in seven sites across four countries. A total of 576 smokers with type 2 diabetes will be randomly assigned (1:2 ratio) to either standard of care with brief cessation advice (Control Arm) or combustion-free nicotine alternatives use (Intervention Arm). The primary end point is the change in the proportion of patients with metabolic syndrome between baseline and the 2-year follow-up. Additionally, the study will analyze the absolute change in the sum of the individual factors of metabolic syndrome at each study time point. Patient recruitment has started in September 2021 and enrollment is expected to be completed by December 2023. Results will be reported in 2026. This study may provide valuable insights into cardiovascular and metabolic health benefits or risks associated with using combustion-free nicotine alternatives for individuals with type 2 diabetes who are seeking alternatives to tobacco cigarette smoking. The study protocol, informed consent forms, and relevant documents were approved by seven ethical review boards. Study results will be disseminated through articles published in high-quality, peer-reviewed journals and presentations at conferences
    corecore