
THE EVOLUTION OF THE DELPHI EXPERIMENT CONTROL SYSTEM
OR

HOW TO SURVIVE TEN YEARS OF RUNNING

A.Augustinus, Ph.Charpentier,M.Donszelmann, C.Gaspar, Ph.Gavillet and M.Jonker,
CERN, Geneva, Switzerland

T.Adye, B.Franek, R.Sekulin, G.Smith,
RAL, Didcot, England

Abstract
The DELPHI experiment at CERN’s LEP collider [1]

started taking data in august 1989. During these ten years
of running, the DELPHI Experiment Control System
(ECS) has been in permanent evolution. However the
initial concepts are still present despite upgrades and
reengineering. This is mainly due to a careful architecture
and design which allowed a smooth evolution with far
better functionality but minor changes for the users
(programmers and operators)..

1 BASIC CONCEPTS
DELPHI is one of the four large experiments at the

LEP electron positron collider. Its readout electronics
consists in over 250 000 channels (after multiplexing) and
its slow controls system handles several thousands
channels (power supplies, temperature and pressure
probes…). The Data Acquisition System (DAS) [2] and
the Slow Controls System (SC) [3] are the two main
components of the Experiment Control System (ECS).
Both are organized in a hierarchy of processors and
processes (front-end level, sub-detector level and central
level).

Besides these two majors system, the ECS integrates
the control of the trigger system [4] (two levels of
triggering, local and central timing configurations) as well
as the LEP Communications System (LCP).

1.1 The Data Acquisition System

The DELPHI Data acquisition System (DAS) [2] is
organized as a set of 20 predefined partitions (equivalent
to a sub-detector or part of it) and a so-called Central
Partition which builds events and performs a software
selection of events (Third Level trigger). Each partition is
itself split at the front-end level into between 1 and 13
entities controlled each by a Crate Processor (CP).

The standard for front-end electronics and processing is
Fastbus. DELPHI has about 150 Fastbus crates.

The partitions are controlled by a Local Event
Supervisor (LES) while the Central Partition is under
control of the Global Event Supervisor (GES). The CP,
LES and GES software are running in the same type of
embedded processor, the Fastbus Inter-segment Processor

(FIP) [5]. DELPHI uses 72 FIPs running the OS9
operating system and connected to the LAN with TCP-IP.

1.2 The Slow-Controls

Each sub-detector has its own independent Slow-
Controls System (SC). The front-end for SC is based on
G64 electronics, controlled by M6809 without operating
system. The only communications medium with the
outside world is Ethernet and softwarewise a CERN-made
implementation of RPC over the CATS protocols. The
whole system contains about 50 G64 processors.

Another 30 processors are used for controlling the
DELPHI gas supply system. This is independent on the
sub-detector SC and is based on a standard set of
processes but it is formally part of the SC System.

1.3 The Trigger System

The DELPHI Trigger System consists in a decision part
and a timing part. Here as well, the organization is
hierarchical with a Central and a Local level. The Central
decision is performed by a set of  Look-Up Tables for
each of the two levels of trigger (respectively 3 and 39 µs
after each beam crossing), while the Trigger Decision
Boxes for each sub-detector are custom made.

The Central Timing is also distributing timing signals to
the sub-detectors via standard modules (at least one per
partition).

The trigger system also comprises a special readout of a
large set of counters for monitoring various parts of the
detector (background, trigger rates…). This readout must
be decoupled from the standard DAS since it must be
permanently running.

1.4 The LEP communications

DELPHI exchanges information with the LEP machine:
settings and parameters from LEP to DELPHI,
luminosity, magnet status and backgrounds from DELPHI
to LEP. This is ensured by a set of processes (LCP)
running in the DELPHI environment with the appropriate
communication tools with LEP (started with RPC, now
using direct read from / write into the LEP database).

International Conference on Accelerator and Large Experimental Physics Control Systems

3

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.5 The Online VMS Cluster

DELPHI had chosen VMS as an operating system for
its online system, due to its rather good real time response
and the flexibility offered by the VMS clusters of
grouping as set of machines and communicate between
them. A dedicated member of the Online VMS Cluster
has been assigned to each sub-detector, while several
members of the cluster were dedicated to Central
Operations. Supervisors are running on this cluster as well
as most User Interface processes.

1.6 The Supervisors

For DAS, each partition is supervised by an LES-
supervisor which communicates directly with the
embedded LES, while the GES-supervisor controls the
Central Partition.

SC entities are supervised by so-called Elementary
Processes (EP). A standard skeleton for G64 processes [6]
as well as for EP’s have been developed for most sub-
detectors while dedicated software has been developed for
the most demanding ones.

1.7 Communications

RPC (over CATS) [8] is used for communications
between SC’s G64 and the Elementary Processes.

For DAS, since embedded processors are on Fastbus,
communications with VMS went initially through
dedicated Fastbus modules and VAX interfaces (CFI for
local partitions, CHI for Central Partition) and associated
software. Hence each partition had a CFI-Server, itself
interfaced to other processes with VMS mailboxes. TCP-
IP, although available on the FIP’s as from 1990, was only
used for software loading via NFS (prior to this, RS232
was used for this purpose!).

2 SMI, BACKBONE OF THE ECS
When conceiving the architecture of the DELPHI ECS,

it was decided to base it on a single high level system
called SMI (State Management Interface).

SMI is based on the concept of objects that are in a
definite state and to which one can send at any moment an
action request that is meant to bring it into another state.
The behavior of objects is described as a Finite State
Machine (FSM) through a dedicated language (SML).

Objects are grouped in SMI Domains (objects closely
related). Two types of objects can be defined :

♦  Abstract objects: their behavior is fully defined in
SML inside an SMI Domain. They may send or
receive action requests to/from other objects and
their state is determined usually as a result of the
change of states of those other objects.

♦  Associated objects: those represent concrete
entities in the system and their behavior in
response to actions consists in a concrete
interaction with hardware. The content of the

action as well as the determination of their states is
performed by a dedicated process called SMI
proxy.

A very simple API has been defined for proxy
initialization, the reception of action requests and setting
of state changes.

The first implementation of SMI [7] (done in
collaboration with  CERN’s DD/OC group following a
DELPHI proposal) was based on a translation of SML
into ADA code which then was turned into a specific
process for each SMI domain. The SMI Run Time Library
(RTL) was as well implemented in ADA.

The communication between SMI processes and
proxies was based on the OSP protocol which is highly
centralized (all processes send to and receive from a
central server).

3 THE INITIAL SYSTEM

When the experiment was commissioned in 1989, each
sub-detector was controlled by a MicroVAX II. For those
who didn’t know that time, these machines had 3 Mbytes
of RAM, a 500 Mbytes disk and a CPU power of about 1
MIPS. The state-of-the-art for User Interfaces was based
on full screen menus (MHI at CERN) or command line
interactive programs. Communications had all to be home
made since no real standard existed yet. Hence DELPHI
was using CERN developed packages: CATS, RPC or
proprietary media (VMS mailboxes and DECNet/T4).

3.1 The early days

At that time SMI was not yet available. Despite that,
since its API had already been defined, a temporary
version of the SMI-RTL has been set up receiving action
requests and setting states via VMS mailboxes.

The DAS User Interface (UI) was very rudimentary and
consisted in an interactive process with line command
where the operator could see the states of the objects he
had to interact with and send actions to them.

For SC as well, the first version of the Elementary
Processes (meant to be SMI-proxies, hence later call SC-
proxies) was also using the mailbox interface, while some
sub-detectors were also using interactive G64 programs
directly.

No Central synchronization was possible and many
operators were needed to send all commands and
communicate… by phone or intercom the success (or
failure) of their actions. Hence not less than 20 persons
were needed to tentatively prepare DELPHI for running
and control its normal behavior!

3.2 The infancy

When SMI was made available after the LEP pilot run
of summer 1989, it could be used straight on, since the
API used for the mailbox interface was that of SMI.
Moreover, the use of VMS shared libraries allowed to

4



replace the Mailbox-SMI by the genuine SMI very easily
(no recompilation/relink) needed.

The first version of SMI had no other possibility of user
interaction but via VMS Global Sections. Hence an SMI
domain could only be controlled on the local node where
it was running. A generic menu program for surveying the
state of SMI objects and send action requests to them has
been developed which represented a big step forward for
controlling the experiment.

3.3 The Childhood

Another major step forward was made when both
Central DAS and SC SMI domains have been completed.
They allowed controlling fully each sub-detector from a
Central place.

One should say that during all that time, the LEP
communication system was still living its own separate
life with ad-hoc interactive displays.

Concerning the trigger, from the design phase it had
been decided that the sub-detector decision and timing
modules would be initialized and supervised by DAS
processes (LES and its supervisor). The Central Trigger
however was controlled by a dedicated interactive
process, in charge of central timing initialization and look-
up tables loading. A separate process was in charge of
receiving the scalers’ contents and make them available
for display and recording in a VMS global section.

4 THE DIM REVOLUTION

When more modern User Interfaces became available
DELPHI decided to upgrade their full screen menu
programs to MOTIF. During the process of design, it was
felt as a constraint to have to get information from VMS
Global Sections: the UI had to run on the local node.
Hence a new project was started with as an aim to provide
an efficient distribution of information throughout the
online cluster. This is how the Distributed Information
Management (DIM) package was first introduced in 1993.

DIM [9] is based on the publish/subscribe variant of the
server/client paradigm: when a process produces
information that may be of some interest for other
processes, it publishes it as a DIM-Service by registering
to a DIM Name-Server. Other processes interested by this
information may place an inquiry to the Name-Server that
will reply with information on the publishing process. The
subscriber then directly establishes a link with the
publisher which will update information either on a time-
interval basis (defined by the subscriber) or when decided
by its programmer.

DIM has got a very simple API for publishers (servers)
and for subscribers (clients). Hence any process in the
Online Cluster can easily become a DIM publisher or
subscriber. DIM clients may receive data in a user-
supplied buffer or by executing a callback routine. All
data transfers in DIM are asynchronous.

DIM takes care of data formats (for inter-platform data
exchange). Very important is its ability at recovering from
both publishers and subscribers crashes or restarts,
without any special action being need from the other
processes.

DIM also has the possibility for servers to declare
accepted commands and for clients to send commands to
servers. Commands consists in sending any data which
wakes up the server and executes a callback routine.1

4.1 DIM as SMI communications layer

Once DIM had been implemented as a data exchange
package in 1993, it was realized that it was also ideal to
replace the OSP package as the SMI communication
layer. OSP had the great disadvantage of being centralized
and hence highly non-scalable, unlike DIM. SMI
programs simply publish the states of objects and the
allowed actions as DIM services. They receive SMI action
requests as DIM commands.

In a first instance, the API of the communication layer
of OSP (called ICT) was emulated with DIM. This was
very useful since one didn’t want to make any
modification neither to the ADA generated programs nor
to the ADA SMIRTL. Hence only the OSP library was
replaced with these mapping routines.

4.2 DIM as a data publisher

DIM is also of course used for its primary goal, i.e.
publishing information which can be used by other
applications or User Interfaces (as the generic DELPHI
User Interface, DUI, for which it had been designed).

As an example, the contents of all scalers read out
permanently by the Trigger System are published. They
are then used by a large variety of programs, as those
computing the background conditions and the luminosity
to be sent to the LEP machine.

5 CONTROLS AUTOMATION
Since SMI allows any level of abstraction, it was

rapidly realized that one could build on top of the basic
controls of DAS and SC more powerful SMI domains to
automate and integrate the full ECS.

5.1 The DAS Autopilot

The Central DAS SMI contains already a high level of
abstraction, since the operator essentially interacts with
one single high level object to which he can send Run
Control commands..

It was hence fairly easy to implement an SMI object
which would mimic what an operator would do to keep
the system taking data, i.e. automatically recover from
errors, start a new run when the system is ready etc…

                                                          
1 Documentation can be found on WWW at the following URL:
http://delonline.cern.ch/dim/doc/www_manual/dim.html

5



This AutoPilot is automatically disabled as soon as the
operator takes over by sending a command directly to the
Central Run Control (this is mandatory to be able to e.g.
stop a run!).

5.2 Full Integration : Big Brother

During data taking, shifters in charge of the DAS and
SC have to exchange information in order to start taking
data only when the volts have been set onto the detectors.
They also have to watch the state of the LEP machine
such as to ramp volts when LEP has collisions and
background conditions are good, lower the volts at the end
of a fill or when background conditions are bad. This may
lead to delays or lack of reaction in case the shifters are
busy solving another problem.

The trigger system also was left aside of the game and
the DAS shifter had to ensure that the proper trigger
conditions had been set when starting taking physics data
while these conditions might have been changed during
the interval between fills.

In order to avoid these delays and potential mistakes, it
was decided to fully integrate these two important
domains (Trigger and LEP) as SMI domains. They are
easily modeled objects with well-defined states and
actions.

A very high level SMI domain has been defined which
ensures the proper sequencing of operations whenever
LEP changes it state. This domain watching everything
has been called … Big Brother! (BB) [10].

As an example, when LEP is in good conditions for
physics data taking, BB stops the current DAS run, sends
an action request to SC to ramps the volts, another one to
Trigger for setting the proper triggering conditions, as
well as for starting logging data. When both SC and
Trigger are ready (actually one requires only that the
essential sub-detectors are ready), BB sets the DAS
AutoPilot on, which then starts a run.

Whenever a fault condition happens in the SC or LEP
(e.g. very high background), BB pauses the run
temporarily to avoid taking bad data and resumes data
taking when SC and/or LEP are back in acceptable
conditions.

5.3 SMI reengineering

In order to improve maintainability and portability of
SMI, it was decided in 1996 to fully reengineer SMI using
OO techniques. Full backward compatibility at the SML
level was kept while many new features have been added
to the original design. The API was kept unchanged for
what concerned the compatible features.

A generic engine is running as a process for each SMI
domain. It configures itself at run-time from the SML
source code.

The engine as well as all accompanying tools have been
written in C++ and this SMI++ framework is presented in
these proceedings [11].

6 DIM FOR DATA TRANSFERS
When DIM has been operational for the ECS, we

realized we had not exploited all its possibilities as a
communication medium, in particular in DAS, since we
were still using complex interfaces between Fastbus
embedded processors and their Supervisors.

6.1 DIM for controlling embedded processors

Thanks to the general API which had been defined for
the communications at the OS9 level and at the VMS
level, it was very easy to replace the communication
libraries using the dedicated hardware interfaces by
libraries built on top of DIM. This allows the LES’s and
the GES to receive configuration commands from their
supervisors through DIM as well as sending back their
status and statistics for monitoring purposes.

6.2 DIM for data transfer

Still the LES’s and the GES had to use those complex
interfaces to transfer data from Fastbus into VMS where
they were handled by a shared buffer system (Model
Buffer Manager, MBM).

It was also straightforward to upgrade the data transfer
process on OS9 into a DIM publisher. The MBM data
producer on VMS is then subscribing to the proper DIM
service and gets data over Ethernet into its shared buffer.
The total data rate including Central and Local readout for
monitoring amounts to 500 kbytes/s which our LAN
easily sustains.

6.3 DIM as data distributor

A shared buffer system for data distribution (MBM)
was highly valuable when CPU power was low and
machines had small memories. This was no more the case
in 1998 and DIM was a very good tool for distributing
event data.

This has been successfully implemented in 1999 by
replacing the MBM Run Time Library by a library based
on the use of DIM publishing. Together with a much
better reliability of the system, we gained for free the
possibility to run data-consuming processes on other
machines than the data producer and hence balance the
usage of computer resources on our Online Cluster.

6.4 Other possible usage of DIM

Although DIM is currently widely used throughout
DELPHI, there are still a few areas where it would have
been interesting to use it:
•  For communicating between processes and the

database server (currently using RPC).
•  Error and alarm utility : we use a CERN standard

package EMU [12] for error logging. DIM would
have simplified logging and error displays at run
time.

6



•  Interactive changes of parameters in SC proxies.
Currently we still use an old interactive program
(HIPE) [13] to modify at run time parameters in the
SC proxies. Usage of the DIM command passing
would have been profitable in this area as well, as
would have been the generalization of DIM
publishing of SC settings (currently used by a few
sub-detectors only).

7 HOW WAS THIS MADE FEASIBLE?

All these changes were feasible without major
modifications to the application software mainly because
of three factors:

♦  Software architecture
♦  Software design
♦  Software implementation

7.1 Software Architecture

We spent a long time discussing architecture of the
DELPHI Experiment Control System during the years
1985 to 1987. It is at that moment that the concept of SMI
emerged and it was decided from the beginning that this
framework would be used for an integrated control.

The concepts of supervisors / proxies was well defined
with their domains of applications.

7.2 Software design

Before any coding started, the API’s of the most
important packages in the system have been defined. For
the most complex packages such as the Model Buffer
Manager (MBM), which was far more general than the
use DELPHI wanted to make, we defined a thin layer of
software with our own API to avoid programmers to face
the complexity of the package. A similar design effort was
devoted to define the API for the communications
between VMS and the Fastbus embedded processors. A
generic API has been defined although at that time no
forecast was made yet for replacing the existing hardware
interfaces.

7.3 Software implementation

The packages have been implemented using the defined
API’s as VMS Shared Libraries whose entry points were
the routines defined as an API. Straightforward evolution
of the software was feasible by simply replacing those
entry points.

A typical example is the VMS-Fastbus communications
for which three successive implementations were
developed: dedicated interface, raw TCP-IP sockets and
DIM communications, without changing a single line of
code in the application. Same thing for replacing the
MBM by a DIM distribution of data.

8 CONCLUSIONS
The DELPHI Experiment Control System is now in

1999 a quite mature system. The usage of our standard
packages (DIM and SMI) could have been extended to
several domains of  the system (Database server, Error
reporting…) but due to limited manpower, the existing
systems were kept when no added value could be
expected (functionality or maintainability). This system
was developed over the years without changing the initial
architecture nor event the predefined API’s, thanks to a
careful analysis of the problem leading to an efficient and
versatile architecture and design.

9 REFERENCES
[1] DELPHI collaboration, P.Aarnio et al., “The

DELPHI detector at LEP” in NIM A303 (1991)
pp.233-276

[2] T.Adye et al., “Architecture and Performance of the
DELPHI Data Acquisition and Control System” on
Proceedings of the International Conference on
Computing in High Energy Physics ’91 (Tsukuba,
Japan, march 1991)

[3] T.Adye et al., “The Design and Operation of the Slow
Controls for the DELPHI Experiment at LEP”,
CERN-DELPHI note 94-14 DAS 151 (1994)

 [4] J.A.Fuster at al., “Architecture and Performance of
the DELPHI Trigger System” in Proceedings of the
IEEE 1992 Nuclear Science Symposium (Orlando,
Florida, Ocober 1992)

[5] Ph.Charpentier et al., “The Fastbus Inter-segment
Processor, FIP” in Proceedings of the IEEE
Nuclear Science Symposium, 1989

[6] G.Smith, “DELPHI Slow Controls G64
Microcomputers Skeleton Program”, CERN-
DELPHI note 94-13 DAS-150 (1994)

[7] J.Barlow et al., “Run Control in MODEL: The State
Manager”, in IEEE trans. Nucl. Sci 36 (1989), p
1549-1553.

[8] T.Berners-Lee, in Proceedings of RT87, IEEE
Trans. Nucl. Sci. 34 No 4, (1987), p 1050.

[9] C.Gaspar and M.Donszelmann, “DIM – A Distributed
Information Management system for the DELPHI
experiment at CERN”, Proceedings of the RT93
Conference, Vancouver, Canada.

[10] B.Franek et al., “Big Brother – A fully automated
Control System for the DELPHI Experiment”, in
Proceedings of CHEP94, San Francisco,USA, 1994.

[11] C.Gaspar, “An Architecture and a Framework for the
design and implementation of large Control
Systems”, in these proceedings.

[12] P.Burkimsher, “EMU, the MODEL Erro Message
Utility”, CERN/ECP write-up, December 1990.

[13] M.Donszelmann, “DELPHI HIPE System User
Manual”, CERN-DELPHI note 92-26 DAS-124,
October 1992.

7


