26 research outputs found

    Tonic and Phasic Amperometric Monitoring of Dopamine Using Microelectrode Arrays in Rat Striatum

    Get PDF
    Here we report a novel microelectrode array recording approach to measure tonic (resting) and phasic release of dopamine (DA) in DA-rich areas such as the rat striatum and nucleus accumbens. The resulting method is tested in intact central nervous system (CNS) and in animals with extensive loss of the DA pathway using the neurotoxin, 6-hydroxyDA (6-OHDA). The self-referencing amperometric recording method employs Nafion-coated with and without m-phenylenediamine recording sites that through real-time subtraction allow for simultaneous measures of tonic DA levels and transient changes due to depolarization and amphetamine-induced release. The recording method achieves low-level measures of both tonic and phasic DA with decreased recording drift allowing for enhanced sensitivity normally not achieved with electrochemical sensors in vivo

    Acute Treatment with Doxorubicin Affects Glutamate Neurotransmission in the Mouse Frontal Cortex and Hippocampus

    Get PDF
    Doxorubicin (DOX) is a potent chemotherapeutic agent known to cause acute and long-term cognitive impairments in cancer patients. Cognitive function is presumed to be primarily mediated by neuronal circuitry in the frontal cortex (FC) and hippocampus, where glutamate is the primary excitatory neurotransmitter. Mice treated with DOX (25 mg/kg i.p.) were subjected to in vivo recordings under urethane anesthesia at 24h post-DOX injection or 5 consecutive days of cognitive testing (Morris Water Maze; MWM). Using novel glutamate-selective microelectrode arrays, amperometric recordings measured parameters of extracellular glutamate clearance and potassium-evoked release of glutamate within the medial FC and dentate gyrus (DG) of the hippocampus. By 24h post-DOX injection, glutamate uptake was 45% slower in the FC in comparison to saline-treated mice. In the DG, glutamate took 48% longer to clear than salinetreated mice. Glutamate overflow in the FC was similar between treatment groups, however, it was significantly increased in the DG of DOX treated mice. MWM data indicated that a single dose of DOX impaired swim speed without impacting total length traveled. These data indicate that systemic DOX treatment changes glutamate neurotransmission in key nuclei associated with cognitive function within 24h, without a lasting impact on spatial learning and memory. Understanding the functional effects of DOX on glutamate neurotransmission may help us understand and prevent some of the debilitating side effects of chemotherapeutic treatment in cancer survivors

    Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum

    Get PDF
    We have previously shown that overexpression of the Glud1 (glutamate dehydrogenase 1) gene in neurons of C57BL/6 mice results in increased depolarization-induced glutamate release that eventually leads to selective neuronal injury and cell loss by 12 months of age. However, it is known that isogenic lines of Tg (transgenic) mice produced through back-crossing with one strain may differ in their phenotypic characteristics from those produced using another inbred mouse strain. Therefore, we decided to introduce the Glud1 transgene into the Balb/c strain that has endogenously lower levels of GLUD1 (glutamate dehydrogenase 1) enzyme activity in the brain as compared with C57BL/6. Using an enzyme-based MEA (microelectrode array) that is selective for measuring glutamate in vivo, we measured depolarization-induced glutamate release. Within a discrete layer of the striatum, glutamate release was significantly increased in Balb/c Tg mice compared with wt (wild-type) littermates. Furthermore, Balb/c mice released approx. 50–60% of the amount of glutamate compared with C57BL/6 mice. This is similar to the lower levels of endogenous GLUD1 protein in Balb/c compared with C57BL/6 mice. The development of these Glud1-overexpressing mice may allow for the exploration of key molecular events produced by chronic exposure of neurons to moderate, transient increases in glutamate release, a process hypothesized to occur in neurodegenerative disorders.This work was supported by the NSF (National Science Foundation) [grant number EEC-0310723]; NIH/NIDA (National Institutes of Health/National Institute on Drug Abuse) [grant number DA017186]; CEBRA, Phase II, NIA, [grant number AG12993]; NIAAA (National Institute of Alcohol Abuse and Alcoholism) [grant numbers AA11419, AA04732, AA12276]; NSF [grant numbers DBI-9987807, DBI-0352848]; NIDA [grant number DA017186]; NINDS (National Institute of Neurological Disorders and Strokes) [grant number NS39787]; NIMH (National Institute of Mental Health) [grant number MH58414]; NIDA Training [grant number DA022738]; NIDA [grant number DA015088], The Kansas Technology Enterprise Corporation, The Miller, Hedwig and Wilbur Fund, and The University of Kansas Research Development Fund

    Differential Levels of Glutamate Dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 Mice and the Effects of Overexpression of the \u3cem\u3eGlud1\u3c/em\u3e Gene on Glutamate Release in Striatum

    Get PDF
    We have previously shown that overexpression of the Glud1 (glutamate dehydrogenase 1) gene in neurons of C57BL/6 mice results in increased depolarization-induced glutamate release that eventually leads to selective neuronal injury and cell loss by 12 months of age. However, it is known that isogenic lines of Tg (transgenic) mice produced through back-crossing with one strain may differ in their phenotypic characteristics from those produced using another inbred mouse strain. Therefore, we decided to introduce the Glud1 transgene into the Balb/c strain that has endogenously lower levels of GLUD1 (glutamate dehydrogenase 1) enzyme activity in the brain as compared with C57BL/6. Using an enzyme-based MEA (microelectrode array) that is selective for measuring glutamate in vivo, we measured depolarization-induced glutamate release. Within a discrete layer of the striatum, glutamate release was significantly increased in Balb/c Tg mice compared with wt (wild-type) littermates. Furthermore, Balb/c mice released approx. 50-60% of the amount of glutamate compared with C57BL/6 mice. This is similar to the lower levels of endogenous GLUD1 protein in Balb/c compared with C57BL/6 mice. The development of these Glud1-overexpressing mice may allow for the exploration of key molecular events produced by chronic exposure of neurons to moderate, transient increases in glutamate release, a process hypothesized to occur in neurodegenerative disorders

    Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum

    Get PDF
    We have previously shown that overexpression of the Glud1 (glutamate dehydrogenase 1) gene in neurons of C57BL/6 mice results in increased depolarization-induced glutamate release that eventually leads to selective neuronal injury and cell loss by 12 months of age. However, it is known that isogenic lines of Tg (transgenic) mice produced through back-crossing with one strain may differ in their phenotypic characteristics from those produced using another inbred mouse strain. Therefore, we decided to introduce the Glud1 transgene into the Balb/c strain that has endogenously lower levels of GLUD1 (glutamate dehydrogenase 1) enzyme activity in the brain as compared with C57BL/6. Using an enzyme-based MEA (microelectrode array) that is selective for measuring glutamate in vivo, we measured depolarization-induced glutamate release. Within a discrete layer of the striatum, glutamate release was significantly increased in Balb/c Tg mice compared with wt (wild-type) littermates. Furthermore, Balb/c mice released approx. 50–60% of the amount of glutamate compared with C57BL/6 mice. This is similar to the lower levels of endogenous GLUD1 protein in Balb/c compared with C57BL/6 mice. The development of these Glud1-overexpressing mice may allow for the exploration of key molecular events produced by chronic exposure of neurons to moderate, transient increases in glutamate release, a process hypothesized to occur in neurodegenerative disorders

    Dopamine Neuron Stimulating Actions of a GDNF Propeptide

    Get PDF
    BACKGROUND: Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), have shown great promise for protection and restoration of damaged or dying dopamine neurons in animal models and in some Parkinson's disease (PD) clinical trials. However, the delivery of neurotrophic factors to the brain is difficult due to their large size and poor bio-distribution. In addition, developing more efficacious trophic factors is hampered by the difficulty of synthesis and structural modification. Small molecules with neurotrophic actions that are easy to synthesize and modify to improve bioavailability are needed. METHODS AND FINDINGS: Here we present the neurobiological actions of dopamine neuron stimulating peptide-11 (DNSP-11), an 11-mer peptide from the proGDNF domain. In vitro, DNSP-11 supports the survival of fetal mesencephalic neurons, increasing both the number of surviving cells and neuritic outgrowth. In MN9D cells, DNSP-11 protects against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA)-induced cell death, significantly decreasing TUNEL-positive cells and levels of caspase-3 activity. In vivo, a single injection of DNSP-11 into the normal adult rat substantia nigra is taken up rapidly into neurons and increases resting levels of dopamine and its metabolites for up to 28 days. Of particular note, DNSP-11 significantly improves apomorphine-induced rotational behavior, and increases dopamine and dopamine metabolite tissue levels in the substantia nigra in a rat model of PD. Unlike GDNF, DNSP-11 was found to block staurosporine- and gramicidin-induced cytotoxicity in nutrient-deprived dopaminergic B65 cells, and its neuroprotective effects included preventing the release of cytochrome c from mitochondria. CONCLUSIONS: Collectively, these data support that DNSP-11 exhibits potent neurotrophic actions analogous to GDNF, making it a viable candidate for a PD therapeutic. However, it likely signals through pathways that do not directly involve the GFRalpha1 receptor

    Trophic structure of neuston across tropical and subtropical oceanic provinces assessed with stable isotopes.

    Get PDF
    This research was supported by project Malaspina-2010 (CSD2008-00077) funded by program CONSOLIDERINGENIO 2010 (Ministerio de Ciencia e Innovación, Spain), by grant IN607A 2018/2 of the Axencia Galega de Innovación (GAIN, Xunta de Galicia, Spain). Thanks are also due to FCT/MCTES for the financial support to CESAM (UIDP/5 0017/2020+UIDB/50017/2020), through national funds. RA was supported by a Ph.D. fellowship funded by FCT (PD/ BD/113483/2015).The marine neuston, organisms living in the vicinity of the ocean surface, is one of the least studied zooplankton groups. Neuston occupies a restricted ecological niche and is affected by a wide range of endo- and exogenous processes, while also being a food source to zooplankton, fish migrating from the deep layers and seabirds. In this study, the neustonic communities were characterized along the Malaspina global expedition sampling tropical and subtropical oceanic provinces using stable carbon and nitrogen isotopes to explore their trophic structure and relationships with environmental variables. The differences in stable isotopes mirrored the patterns in environmental characteristics of each province. High δ13C values were associated with continental and atmospheric carbon inputs, while the presence of dinoflagellates, coccolithophorids and upwelling influence are related to low δ13C values. Similarly, provinces presenting high δ15N values were associated with denitrification and nitrate diffusive fluxes, whereas the presence of low δ15N is attributable to nitrogen supplied through N2 fixation by diazotrophs. Neuston showed a large overlap among the isotopic niches of four functional groups, with chaetognaths and detritivore generally exhibiting a smaller degree of overlap compared to carnivores and omnivores. These results support the hypothesis of a common trophic structure in the neuston community across the ocean. However, the size of the niche, small in coastal areas and those influenced by upwelling and large in oligotrophic regions, and their overlap, low in more productive provinces and high in oligotrophic provinces, may be associated with food availability. Small trophic niches are associated with a dominance of specialized over-opportunistic feeding in productive environments.This research was supported by project Malaspina-2010 (CSD2008-00077) funded by program CONSOLIDERINGENIO 2010 (Ministerio de Ciencia e Innovación, Spain), by grant IN607A 2018/2 of the Axencia Galega de Innovación (GAIN, Xunta de Galicia, Spain). Thanks are also due to FCT/MCTES for the financial support to CESAM (UIDP/5 0017/2020+UIDB/50017/2020), through national funds. RA was supported by a Ph.D. fellowship funded by FCT (PD/ BD/113483/2015).En prens

    Chronic intermittent L-DOPA treatment induces changes in dopamine release

    No full text
    3,4-Dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia often develops as a side effect of chronic l-DOPA therapy. This study was undertaken to investigate dopamine (DA) release upon l-DOPA treatment. Chronoamperometric measurements were performed in unilaterally DA-depleted rats, chronically treated with l-DOPA, resulting in dyskinetic and non-dyskinetic animals. Normal and lesioned l-DOPA naive animals were used as controls. Potassium-evoked DA releases were significantly reduced in intact sides of animals undertaken chronic l-DOPA treatment, independent on dyskinetic behavior. Acute l-DOPA further attenuated the amplitude of the DA release in the control sides. In DA-depleted striata, no difference was found in potassium-evoked DA releases, and acute l-DOPA did not affect the amplitude. While immunoreactivity to serotonin uptake transporter was higher in lesioned striata of animals displaying dyskinetic behavior, no correlation could be documented between serotonin transporter-positive nerve fiber density and the amplitude of released DA. In conclusions, the amplitude of potassium-evoked DA release is attenuated in intact striatum after chronic intermittent l-DOPA treatment. No change in amplitude was found in DA-denervated sides of either dyskinetic or non-dyskinetic animals, while release kinetics were changed. This indicates the importance of studying DA release dynamics for the understanding of both beneficial and adverse effects of l-DOPA replacement therapy
    corecore