103 research outputs found

    Ground Penetrating Radar Use in Three Contrasting Soil Textures in Southern Ontario

    Get PDF
    Ground penetrating radar (GPR) is a non-invasive, geophysical tool that can be used for the identification of clandestine graves. GPR operates by detecting density differences in soil by the transmission of high frequency electromagnetic waves from an antenna. Domestic pig (Sus scrofa domesticus) carcasses were clothed in 100% cotton t-shirts and 50% cotton/50% polyester briefs, and buried at a consistent depth at three field sites of contrasting soil texture (silty clay loam, fine sand and fine sandy loam) in southern Ontario. GPR was used to detect and monitor the graves for a period of 14 months post-burial. Analysis of collected data revealed that GPR had applicability in the identification of clandestine graves in silty clay loam and fine sandy loam soils, but was not suitable for detection in the fine sandy soil studied. The results of this research have applicability within forensic investigations involving decomposing remains by aiding in the location of clandestine graves in loam soils in southern Ontario through the use of GPR. geoforensics, ground penetrating radar, soil texture, buried remain

    The combination of bortezomib with chemotherapy to treat relapsed/refractory acute lymphoblastic leukaemia of childhood

    Get PDF
    Achieving complete remission (CR) in childhood relapsed/refractory acute lymphoblastic leukaemia (ALL) is a difficult task. Bortezomib, a proteasome inhibitor, has invitro activity against ALL blasts. A phase I-II trial, reported by the Therapeutic Advances in Childhood Leukaemia and Lymphoma (TACL) consortium, demonstrated that bortezomib with chemotherapy has acceptable toxicity and remarkable activity in patients with relapsed ALL failing 2-3 previous regimens. We evaluated bortezomib in combination with chemotherapy in 30 and 7 children with B-cell precursor (BCP) and T-cell ALL, respectively. Bortezomib (13mg/m(2)/dose) was administered intravenously on days 1, 4, 8, and 11. Chemotherapy agents were the same as those used in the TACL trial, consisting of dexamethasone, doxorubicin, vincristine and pegylated asparaginase. Three patients (81%) died due to infections. Twenty-seven patients (729%) achieved CR or CR with incomplete platelet recovery (CRp). Fourteen had minimal residual disease (MRD) lower than 01%. Twenty-two of 30 BCP-ALL patients (733%) and 5/7 patients (71%) with T-cell ALL achieved CR/CRp. The 2-year overall survival (OS) is 313%; CR/CRp patients with an MRD response had a remarkable 2-year OS of 684%. These data confirm that the combination of bortezomib with chemotherapy is a suitable/effective option for childhood relapsed/refractory ALL

    Partial T cell defects and expanded CD56bright NK cells in an SCID patient carrying hypomorphic mutation in the IL2RG gene

    Get PDF
    X-linked severe combined immunodeficiency (X-SCID) caused by full mutation of the IL2RG gene leads to T- B+ NK- phenotype and is usually associated with severe opportunistic infections, diarrhea, and failure to thrive. When IL2RG hypomorphic mutation occurs, diagnosis could be delayed and challenging since only moderate reduction of T and NK cells may be present. Here, we explored phenotypic insights and the impact of the p.R222C hypomorphic mutation (IL2RGR222C ) in distinct cell subsets in an 8-month-old patient with atypical X-SCID. We found reduced CD4+ T cell counts, a decreased frequency of naïve CD4+ and CD8+ T cells, and an expansion of B cells. Ex vivo STAT5 phosphorylation was impaired in CD4+ CD45RO+ T cells, yet compensated by supraphysiological doses of IL-2. Sanger sequencing on purified cell subsets showed a partial reversion of the mutation in total CD3+ cells, specifically in recent thymic emigrants (RTE), effector memory (EM), and CD45RA+ terminally differentiated EM (EMRA) CD4+ T cells. Of note, patient's NK cells had a normal frequency compared to age-matched healthy subjects, but displayed an expansion of CD56bright cells with higher perforin content and cytotoxic potential, associated with accumulation of NK-cell stimulatory cytokines (IL-2, IL-7, IL-15). Overall, this report highlights an alteration in the NK-cell compartment that, together with the high disease-phenotype variability, should be considered in the suspicion of X-SCID with hypomorphic IL2RG mutation

    Brazilian coffee genome project: an EST-based genomic resource

    Full text link

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Effect of single-chirality single-walled carbon nanotubes in dye sensitized solar cells photoanodes

    No full text
    Dye-sensitized solar cells (DSSCs) with photoanodes composed of chirality selected single-wall carbon nanotubes (SWNTs) have been fabricated and tested for first time. Single chirality SWCNTs separation (93% purity) have been achieved by modifying standard size exclusion gel chromatography. Chirality selection has allowed for “tuning” of the energy barrier at the TiO2/SWNT/FTO interface, electronic conductivity enhancement, and reduced SWCNTs-ruthenium dye competition for light absorption resulting in a 81% energy conversion efficiency improvement compared to mixed chirality cells. Unfortunately, energy conversion efficiency has been limited by cells’ low shunt resistance. Additionally, SWCNTs electron transfer properties have been exploited to prepare mixed and chirality specific CNTs based DSSCs’ counter electrodes
    corecore