17 research outputs found

    Reconstruction of ancient microbial genomes from the human gut

    Get PDF
    Loss of gut microbial diversity in industrial populations is associated with chronic diseases, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000–2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces

    Towards precision medicine: defining and characterizing adipose tissue dysfunction to identify early immunometabolic risk in symptom-free adults from the GEMM family study

    Get PDF
    Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic low-grade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants

    Heterogenous Distribution of <i>MTHFR</i> Gene Variants among Mestizos and Diverse Amerindian Groups from Mexico

    No full text
    <div><p>Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate metabolism. Folate deficiency has been related to several conditions, including neural tube defects (NTDs) and cardiovascular diseases. Hence, <i>MTHFR</i> genetic variants have been studied worldwide, particularly the C677T and A1298C. We genotyped the C677T and A1298C <i>MTHFR</i> polymorphisms in Mexican Amerindians (MAs), from the largest sample included in a genetic study (n = 2026, from 62 ethnic groups), and in a geographically-matched Mexican Mestizo population (MEZ, n = 638). The 677T allele was most frequent in Mexican individuals, particularly in MAs. The frequency of this allele in both MAs and MEZs was clearly enriched in the South region of the country, followed by the Central East and South East regions. In contrast, the frequency of the 1298C risk allele in Mexicans was one of the lowest in the world. Both in MAs and MEZs the variants 677T and 1298C displayed opposite allele frequency gradients from southern to northern Mexico. Our findings suggest that in Mestizos the 677T allele was derived from Amerindians while the 1298C allele was a European contribution. Some subgroups showed an allele frequency distribution that highlighted their genetic diversity. Notably, the distribution of the frequency of the 677T allele was consistent with that of the high incidence of NTDs reported in MEZ.</p></div

    Geographic distribution of allele frequencies for the C677T polymorphism in the MA population.

    No full text
    <p>CDMX, Mexico City; MEX, Mexico State; MOR, Morelos; OAX, Oaxaca; PUE, Puebla; SLP, San Luis Potosí. Striped States were not sampled because they are inhabited by neighboring indigenous included in this study. *States without indigenous population [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0163248#pone.0163248.ref032" target="_blank">32</a>].</p

    Deep Multi-OMICs and Multi-Tissue Characterization in a Pre- and Postprandial State in Human Volunteers: The GEMM Family Study Research Design

    Get PDF
    Cardiovascular disease (CVD) and type 2 diabetes (T2D) are increasing worldwide. This is mainly due to an unhealthy nutrition, implying that variation in CVD risk may be due to variation in the capacity to manage a nutritional load. We examined the genomic basis of postprandial metabolism. Our main purpose was to introduce the GEMM Family Study (Genetics of Metabolic Diseases in Mexico) as a multi-center study carrying out an ongoing recruitment of healthy urban adults. Each participant received a mixed meal challenge and provided a 5-hours&#8217; time course series of blood, buffy coat specimens for DNA isolation, and adipose tissue (ADT)/skeletal muscle (SKM) biopsies at fasting and 3 h after the meal. A comprehensive profiling, including metabolomic signatures in blood and transcriptomic and proteomic profiling in SKM and ADT, was performed to describe tendencies for variation in postprandial response. Our data generation methods showed preliminary trends indicating that by characterizing the dynamic properties of biomarkers with metabolic activity and analyzing multi-OMICS data it could be possible, with this methodology and research design, to identify early trends for molecular biology systems and genes involved in the fasted and fed states

    Replication of Integrative Data Analysis for Adipose Tissue Dysfunction, Low-Grade Inflammation, Postprandial Responses and OMICs Signatures in Symptom-Free Adults

    Get PDF
    We previously reported preliminary characterization of adipose tissue (AT) dysfunction through the adiponectin/leptin ratio (ALR) and fasting/postprandial (F/P) gene expression in subcutaneous (SQ) adipose tissue (AT) biopsies obtained from participants in the GEMM study, a precision medicine research project. Here we present integrative data replication of previous findings from an increased number of GEMM symptom-free (SF) adults (N = 124) to improve characterization of early biomarkers for cardiovascular (CV)/immunometabolic risk in SF adults with AT dysfunction. We achieved this goal by taking advantage of the rich set of GEMM F/P 5 h time course data and three tissue samples collected at the same time and frequency on each adult participant (F/P blood, biopsies of SQAT and skeletal muscle (SKM)). We classified them with the presence/absence of AT dysfunction: low (1) ALR. We also examined the presence of metabolically healthy (MH)/unhealthy (MUH) individuals through low-grade chronic subclinical inflammation (high sensitivity C-reactive protein (hsCRP)), whole body insulin sensitivity (Matsuda Index) and Metabolic Syndrome criteria in people with/without AT dysfunction. Molecular data directly measured from three tissues in a subset of participants allowed fine-scale multi-OMIC profiling of individual postprandial responses (RNA-seq in SKM and SQAT, miRNA from plasma exosomes and shotgun lipidomics in blood). Dynamic postprandial immunometabolic molecular endophenotypes were obtained to move towards a personalized, patient-defined medicine. This study offers an example of integrative translational research, which applies bench-to-bedside research to clinical medicine. Our F/P study design has the potential to characterize CV/immunometabolic early risk detection in support of precision medicine and discovery in SF individuals
    corecore