223 research outputs found

    New mantle convection model may reconcile conflicting evidence

    Get PDF
    Recently, a new model for mantle convection was proposed that may be more realistic than previous standard models. Exciting questions remain, of course, but we believe it can be used to reconcile otherwise conflicting evidence from different research fields and thus provide a new framework for further studies of convection

    Zoned mantle convection

    Get PDF
    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth’s history that can reconcile this evidence. Wholemantle convection, even with material segregated within the D00 region just above the core{mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends|in a complicated fashion|on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. platetectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the e¬ect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and 3He observations in oceanisland basalts

    Rome’s urban history inferred from Pb-contaminated waters trapped in its ancient harbor basins

    Get PDF
    Heavy metals from urban runoff preserved in sedimentary deposits record long-term economic and industrial development via the expansion and contraction of a city’s infrastructure. Lead concentrations and isotopic compositions measured in the sediments of the harbor of Ostia—Rome’s first harbor—show that lead pipes used in the water supply networks of Rome and Ostia were the only source of radiogenic Pb, which, in geologically young central Italy, is the hallmark of urban pollution. High-resolution geochemical, isotopic, and 14C analyses of a sedimentary core from Ostia harbor have allowed us to date the commissioning of Rome’s lead pipe water distribution system to around the second century BC, considerably later than Rome’s first aqueduct built in the late fourth century BC. Even more significantly, the isotopic record of Pb pollution proves to be an unparalleled proxy for tracking the urban development of ancient Rome over more than a millennium, providing a semiquantitative record of the water system’s initial expansion, its later neglect, probably during the civil wars of the first century BC, and its peaking in extent during the relative stability of the early high Imperial period. This core record fills the gap in the system’s history before the appearance of more detailed literary and inscriptional evidence from the late first century BC onward. It also preserves evidence of the changes in the dynamics of the Tiber River that accompanied the construction of Rome’s artificial port, Portus, during the first and second centuries AD

    New findings of ancient Greek silver sources

    Get PDF
    Over the last 60 years, much analytical research has sought to determine the ore sources of ancient Greek silver artefacts. Lead isotopic analysis has played a key role in this endeavor. While most studies so far have limited their search to places mentioned in historical sources, the present study takes a different approach by first identifying Ag-bearing ore sources in the Aegean world based on their geological characteristics and then using Pb isotopes to determine whether they were exploited in antiquity. To this end, we have geolocated, sampled, and measured high-precision Pb isotopic compositions of 17 Ag-bearing mineralizations in Greece for which we have evidence of ancient mining activity, and a further 10 exhibiting minor Ag occurrences that may also have been exploited in ancient times. We found that Pb model ages provide better discrimination of ore sources than the more conventional plots of raw Pb isotope data

    Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Get PDF
    Isotope fractionation between the common Cu species present in solution (Cu[+], Cu[2+], hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid–liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the [65]Cu/[63]Cu ratio fractionated by −1.06‰ to −0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl[−] via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ∼3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ[65]Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys

    A lead isotope perspective on urban development in ancient Naples

    Get PDF
    The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis’ harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis’ water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis’ water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions

    Lead isotopes as tracers of crude oil migration within deep crustal fluid systems

    Get PDF
    Although Pb, U, and Th may be fractionated between crude oil and formation waters, Pb isotopes are not. This unique property makes Pb isotopes a particularly useful marker of hydrocarbon generation and migration. Here we show that Pb isotopes offer a new vision of long-range (secondary) oil migration relevant to the formation of oil fields. North Sea oils are largely generated from Jurassic black shales, yet their Pb isotopes are mixtures of Cenozoic to Proterozoic end-members. The same observation is made for crude oils from the Paris Basin, the Barents Sea, Libya, Kuwait, Kazakhstan, and Australia. Bulk Pb in crude oil therefore, for the most part, is foreign to its source rock(s). Our high-precision Pb isotope data on 195 crude oils worldwide, the first such data set in the published literature, and 17 Northern European black shales indicate that deep-seated Pb components originating beneath the source rocks are ubiquitous in crude oil. This implies that oil fields are embedded in basinal convective systems of hydrous fluids heated from below. Plumes of hot fluids rise from the lower thermal boundary layer, which Pb isotopes require douse the basement, into the core of the porous-flow convective cell where they dissolve the newly formed hydrocarbons sequestered in the source rocks. The fluids finally unload unmixed formation waters and crude oil at the base of the upper (conductive) boundary layer where they can be trapped in favorable sites. Based on these new insights we argue that Pb isotopes in crude oil constitute a good tracer of oil migration

    Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Volcanology and Geothermal Research 177 (2008): 589-605, doi:10.1016/j.jvolgeores.2007.11.025.Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (~1000°C) and oxygen fugacity (ΔlogFMQ = -0.9) have been stable. Large temperature variations at the lake surface (ca. 400 - 500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3-22.9Ab62.8-68.1Or11.4-27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization to occur and shallow convection repeats this process multiple times, yielding extremely large anorthoclase crystals. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system. Eleven bulk samples of phonolite lava from the summit plateau that range in age from 0 ± 4 ka to 17 ± 8 ka were analyzed for major and trace elements. Small compositional variations are controlled by anorthoclase content. The lavas are indistinguishable from modern bulk lava bomb compositions and demonstrate that Erebus volcano has been erupting lava and tephra from the summit region with the same bulk composition for ~17 ka.The work at Erebus volcano and the continued operation of the Mount Erebus Volcano Observatory is supported by grants (OPP-0229305, ANT-0538414) from the Office of Polar Programs, National Science Foundation

    Lower export production during glacial periods in the equatorial Pacific derived from (231Pa/230Th)xs,0 measurements in deep-sea sediments

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4023, doi:10.1029/2003PA000994.The (231Pa/230Th)xs,0 records obtained from two cores from the western (MD97-2138; 1°25′S, 146°24′E, 1900 m) and eastern (Ocean Drilling Program Leg 138 Site 849, 0°11.59′N, 110°31.18′W, 3851 m) equatorial Pacific display similar variability over the last 85,000 years, i.e., from isotopic stages 1 to 5a, with systematically higher values during the Holocene, isotopic stage 3, and isotopic stage 5a, and lower values, approaching the production rate ratio of the two isotopes (0.093), during the colder periods corresponding to isotopic stages 2 and 4. We have also measured the 230Th-normalized biogenic preserved and terrigenous fluxes, as well as major and trace elements concentrations, in both cores. The (231Pa/230Th)xs,0 results combined with the changes in preserved carbonate and opal fluxes at the eastern site indicate lower productivity in the eastern equatorial Pacific during glacial periods. The (231Pa/230Th)xs,0 variations in the western equatorial Pacific also seem to be controlled by productivity (carbonate and/or opal). The generally high (231Pa/230Th)xs,0 ratios (>0.093) of the profile could be due to opal and/or MnO2 in the sinking particles. The profiles of (231Pa/230Th)xs,0 and 230Th-normalized fluxes indicate a decrease in exported carbonate, and possibly opal, during isotopic stages 2 and 4 in MD97-2138. Using 230Th-normalized flux, we also show that sediments from the two cores were strongly affected by sediment redistribution by bottom currents suggesting a control of mass accumulation rates by sediment focusing variability.SP funding for this research was provided by grants from the French Minister of Research and a EURODOC grant of the Re´gion Rhoˆne-Alpes (SAFIR-980065327). SP also gratefully acknowledges the financial support of the WHOI Geology and Geophysics Dept. This work was also supported by a CNRS-NSF grant (SP and KWWS). The contribution of JFM to this study was supported in part by the US NSF and by WHOI OCCI and Mellon awards
    corecore